K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 1 2017

Có: MA/MD = NB/NC

=> MA/MD + 1 = NB/NC + 1

=> MA+MD/MD = NB+NC/NC

=> AD/MD = BC/NC

Mà AD = BC (do ABCD là hbh)

=> MD = NC (1)

Lại có: AD // BC (do ABCD là hbh)

M thuộc AD, N thuộc BC

=> MD // NC (2)

Từ (1) và (2) => MN // CD ( hệ quả của t/c đoạn chắn)

CD // AB (do ABCD là hbh)

=> MN // AB (đpcm)

10 tháng 3 2022

-OM cắt DC tại N'.

\(\dfrac{AM}{DN}=\dfrac{MB}{NC}=\dfrac{AM+MB}{DN+BC}=\dfrac{AB}{DC}\)

-Xét △ODN' có: AM//DN'.

\(\Rightarrow\dfrac{AM}{DN'}=\dfrac{OM}{MN'}\) (hệ quả định lí Ta-let) (1)

-Xét △OCN' có: BM//CN'.

\(\Rightarrow\dfrac{BM}{CN'}=\dfrac{OM}{MN'}\) (định lí Ta-let) (2)

-Từ (1) và (2) suy ra: 

\(\dfrac{AM}{DN'}=\dfrac{BM}{CN'}=\dfrac{AM+BM}{CN'+DN'}=\dfrac{AB}{CD}\)

\(\Rightarrow\dfrac{AM}{CN'}=\dfrac{BM}{DN'}=\dfrac{AM}{CN}=\dfrac{BM}{DN}\)

\(\Rightarrow CN=CN';DN=DN'\)

\(\Rightarrow N\equiv N'\)

-Vậy MN đi qua điểm O.

a: Xét hình thang ABCD có MN//AB//CD

nên AM/MD=BN/NC

b: Ta có: AM/MD=BN/NC

=>MD/AM=NC/BN

=>MD/AM+1=NC/BN+1

=>AD/AM=BC/BN

=>AM/AD=BN/BC

c: AM/MD=BN/NC

=>AM/MD+1=BN/NC+1

=>AD/DM=BC/CN

=>BM/AD=CN/BC

23 tháng 5 2022

\(AM=2MD\Rightarrow\dfrac{AM}{AD}=\dfrac{2}{3}\)

\(BN=\dfrac{2}{3}NC\Rightarrow\dfrac{NC}{BC}=\dfrac{3}{5}\)

Hai tg ABD và tg BCD có đường cao từ D->AB = đường cao từ B->CD nên

\(\dfrac{S_{ABD}}{S_{BCD}}=\dfrac{AB}{CD}=\dfrac{4}{5}\)

\(\Rightarrow S_{ABD}=\dfrac{4}{9}xS_{ABCD}\) và \(S_{BCD}=\dfrac{5}{9}xS_{ABCD}\)

Hai tg ABM và tg ABD có chung đường cao từ B->AD nên

\(\dfrac{S_{ABM}}{S_{ABD}}=\dfrac{AM}{AD}=\dfrac{2}{3}\Rightarrow S_{ABM}=\dfrac{2}{3}xS_{ABD}=\dfrac{2}{3}x\dfrac{4}{9}xS_{ABCD}=\dfrac{8}{27}xS_{ABCD}\)

Hai tg CND và tg BCD có chung đường cao từ D->BC nên

\(\dfrac{S_{CND}}{S_{BCD}}=\dfrac{CN}{BC}=\dfrac{3}{5}\Rightarrow S_{CND}=\dfrac{3}{5}xS_{BCD}=\dfrac{3}{5}x\dfrac{5}{9}xS_{ABCD}=\dfrac{1}{3}xS_{ABCD}\)

\(\Rightarrow\dfrac{S_{ABM}}{S_{CND}}=\dfrac{\dfrac{8}{27}xS_{ABCD}}{\dfrac{1}{3}xS_{ABCD}}=\dfrac{8}{9}\)