tùng nghĩ ra một số nhỏ nhất khi chia cho 2,3,4,5,6 đều có số dư lần lượt là 1,2,3,4,5 nhưng khi chia cho 7 thì không dư hỏi tùng nghĩ ra số nào.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì số đó chia cho 2; 3; 4; 5; 6 dư 1; 2; 3; 4;5 nên nếu lấy số đó cộng thêm 1 thì được số mới chia hết cho cả 2; 3; 4; 5; 6. Và số mới đó chia cho 7 dư 1.
Số chia hết cho đồng thời 2 và 3 thì chia hết cho 6; số chia hết cho 4 thì chia hết cho 2. Vậy chỉ cần số mới chia hết cho 3; 4; 5 là nó chia hết cho cả 2; 3; 4; 5; 6. Số chia hết cho 3; 4; 5 là các số 60; 120; 180; . . .
Trong các số đó, số chia cho 7 dư 1 là 120. Vậy số chia hết cho 2; 3; 4; 5; 6 và chia cho 7 dư 1 là 120.
Suy ra số cần tìm là 120 - 1 = 119
Ta gọi số đó là a (a thuộc N)theo đề bài ta có a chia cho 2;3;4;5;6; đều dư 1 (1).Vậy a-1 chia hết cho 2;3;4;5;6 mà đề bài bảo rằng số đó là số nhỏ nhất (2).Từ (1) và (2) ta suy ra a-1 là BCNN(2;3;4;5;6) mà BCNN(2;3;4;5;6) là 60 . Ta thấy đề bài nói số đố phải chia hết cho 7 nên a-1 chia hết cho 7. Ta lấy 60.7=420. Vậy a=420+1=421.Vậy số ta cần tìm là 421 (Chúc bạn học tốt nhé)
Gọi số cần tìm là a
a chia 2;3;4;5;6 dư 1;2;3;4;5
=> a = BCNN (2;3;4;5;6) - 1
2 = 2 ; 3= 3 ; 4 = 22 ; 5= 5 ; 6 = 2.3
BCNN(2;3;4;5;6) = 22 . 3 . 5 = 60
a = 60 - 1 = 59
Vậy số cần tìm bằng 59
trả lời nhanh giúp mình nhé