Rút gọn phân số sau:
\(M=\frac{\text{2 . 6 . 10 + 4 . 12 . 20 + 6 . 18 . 30 + ..... + 20 . 60 . 100 }}{\text{1 . 2 . 3 + 2 . 4 . 6 + 3 . 6 . 9 + ..... + 10 . 20 . 30}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\frac{2.6.10+4.12.20+...+20.60.100}{1.2.3+2.4.6+...+10.20.30}=\frac{2.6.10.1^3+2.6.10.2^3+...+2.6.10.10^3}{1.2.3.1^3+1.2.3.2^3+...+1.2.3.10^3}\)
\(=\frac{2.6.10.\left(1^3+2^3+...+10^3\right)}{1.2.3.\left(1^3+2^3+...+10^3\right)}=\frac{2.6.10}{1.2.3}=20\)
vậy M=20
12/18 + 12/42 = 2/3 + 2/7 = 14/21 + 6/21 = 20/21
1/2 + 2/4 + 3/6 + 4/8 + 5/10 + 6/12
= 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2
= 1/2 x 6
=6/2
=3
ta có : (ghi lại đề)
=6+12+18+24+30/3+6+9+12+15
=2*(3/3+6/6+9/9+12/12+15/15)
=2*(1+1+1+1+1)
=2*5=10
chúc main học tốt nhé
a; \(\dfrac{1}{4}\) + \(\dfrac{2}{5}\) + \(\dfrac{6}{8}\) + \(\dfrac{9}{15}\) + \(\dfrac{8}{1}\)
= (\(\dfrac{1}{4}\) + \(\dfrac{6}{8}\)) + (\(\dfrac{2}{5}\) + \(\dfrac{9}{15}\)) + \(\dfrac{8}{1}\)
= (\(\dfrac{1}{4}\) + \(\dfrac{3}{4}\)) + (\(\dfrac{2}{5}\) + \(\dfrac{3}{5}\)) + 8
= 1 + 1 + 8
= 2 + 8
= 10
b; \(\dfrac{1}{2}\) + \(\dfrac{2}{4}\) + \(\dfrac{3}{6}\) + \(\dfrac{4}{8}\) + \(\dfrac{5}{10}\) + \(\dfrac{6}{12}\) + \(\dfrac{7}{14}\) + \(\dfrac{8}{16}\) + \(\dfrac{10}{20}\)
= \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) x (\(\dfrac{2}{2}\) + \(\dfrac{3}{3}\) + \(\dfrac{4}{4}\) + \(\dfrac{5}{5}\)+ \(\dfrac{6}{6}+\dfrac{7}{7}+\dfrac{8}{8}\) + \(\dfrac{10}{10}\))
= \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) x (1 + 1 +1 + 1+ 1+ 1+ 1 +1)
= \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) x 1 x 8
= \(\dfrac{1}{2}\) + \(\)\(\dfrac{1}{2}\) x 8
= \(\dfrac{1}{2}\) + 4
= \(\dfrac{9}{2}\)
a; \(\dfrac{1}{4}\) + \(\dfrac{2}{5}\) + \(\dfrac{6}{8}\) + \(\dfrac{9}{15}\) + \(\dfrac{8}{1}\)
= (\(\dfrac{1}{4}\) + \(\dfrac{6}{8}\)) + (\(\dfrac{2}{5}\) + \(\dfrac{9}{15}\)) + 8
= (\(\dfrac{1}{4}\) + \(\dfrac{3}{4}\)) + (\(\dfrac{2}{5}\) + \(\dfrac{3}{5}\)) + 8
= 1 + 1 + 8
= 2 + 8
= 10
b; \(\dfrac{1}{2}\) + \(\dfrac{2}{4}\) + \(\dfrac{3}{6}\) + \(\dfrac{4}{8}\) + \(\dfrac{5}{10}\) + \(\dfrac{6}{12}\) + \(\dfrac{7}{14}\) + \(\dfrac{8}{16}\) + \(\dfrac{9}{18}\) + \(\dfrac{10}{20}\)
= \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\)
= \(\dfrac{1}{2}\) x 10
= 5
a; \(\dfrac{9}{27}\) + \(\dfrac{7}{-49}\)
= \(\dfrac{1}{3}\) - \(\dfrac{1}{7}\)
= \(\dfrac{7}{21}\) - \(\dfrac{3}{21}\)
= \(\dfrac{4}{21}\)
b; - \(\dfrac{12}{10}\) + \(\dfrac{-25}{30}\)
= - \(\dfrac{6}{5}\) - \(\dfrac{5}{6}\)
= -\(\dfrac{36}{30}\) - \(\dfrac{25}{30}\)
= \(\dfrac{-61}{30}\)
c; \(\dfrac{-20}{35}\) + \(\dfrac{-16}{-24}\)
= - \(\dfrac{4}{7}\) + \(\dfrac{2}{3}\)
= - \(\dfrac{12}{21}\) + \(\dfrac{14}{21}\)
= \(\dfrac{2}{21}\)
d; - \(\dfrac{21}{77}\) + \(\dfrac{10}{-35}\)
= - \(\dfrac{3}{11}\) - \(\dfrac{2}{7}\)
= - \(\dfrac{21}{77}\) - \(\dfrac{22}{77}\)
= - \(\dfrac{43}{77}\)
\(\frac{10}{25}=\frac{10:5}{25:5}=\frac{2}{5}\)
\(\frac{5}{20}=\frac{5:5}{20:5}=\frac{1}{4}\)
\(\frac{6}{30}=\frac{6:6}{30:6}=\frac{1}{5}\)
\(\frac{60}{20}=\frac{60:20}{20:20}=3\)
\(M=\frac{2.6.10+4.12.20+6.18.30+...+20.60.100}{1.2.3+2.4.6+3.6.9+...+10.20.30}\)
\(=\frac{2.6.10.\left(1+2+3+...+10\right)}{1.2.3.\left(1+2+3+...+10\right)}\)
\(=20\)