K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 11 2019

d. Chứng minh đc ABDC là hình chữ nhật.

=> \(S_{ABDC}=AB.AC\)

Để \(S_{ABDC}=AB^2\)

khi đó AC = AB

=> Tam giác ABC có thêm điều kiện: cân tại A

25 tháng 11 2019

B A C D P N M

a) Xét tứ giác BMCP có : 

N là trung điểm của MP

N là trung điểm của BC

=> BMCP là hình bình hành ( dấu hiệu )

b) Xét tam giác ABC có :

M là trung điểm của AB

N là trung điểm của BC

=> Mn là đường trung bình của tam giác ABC ( định nghĩa )

=> MN // AC hay MP // AC ; MN = 1/2 AC ( tính chất )

Vì MN = MP

=> MN + MP = 1/2 AC + 1/2 AC = AC = MP

Xét tứ giác AMPC có : AC // MP ; AC = MP

=> AMPC là hình bình hành ( dấu hiệu )

Hình bình hành AMPC có :  góc ABC = 90o

=> AMPC là hình chữ nhật ( dấu hiệu )

22 tháng 10 2023

a: Xét tứ giác APCQ có

N là trung điểm chung của AC và PQ

nên APCQ là hình bình hành

=>AQ//CP và AQ=CP

AQ=CP

CP=PB

Do đó: AQ=BP

AQ//CP

mà B thuộc tia đối của tia CP

nên AQ//BP

Xét tứ giác AQPB có

AQ//PB

AQ=PB

Do đó: AQPB là hình bình hành

b: Xét ΔABC có

M,N lần lượt là trung điểm của AB,AC

=>MN là đường trung bình của ΔABC

=>MN//BC

=>MN//HP

Xét ΔABC có

M,P lần lượt là trung điểm của BA,BC

=>MP là đường trung bình

=>MP//AC và MP=AC/2(1)

ΔAHC vuông tại H

mà HN là đường trung tuyến

nên \(HN=\dfrac{AC}{2}\)(2)

Từ (1),(2) suy ra MP=HN

Xét tứ giác MNPH có

MN//PH

MP=HN

Do đó: MNPH là hình thang cân

a: Xét ΔCAB có

N là trung điểm của AB

NP//AB

=>P là trung điểm của AC

Xét ΔCAB có

N là trung điểm của BC

NM//AC

=>M là trung điểm của AB

b: Xét tứ giác ANCE có

P là trung điểm chung của AC và NE

AC vuông góc NE

=>ANCE là hình thoi

17 tháng 12 2023

a: Xét ΔABC có

M,N lần lượt là trung điểm của AB,AC

=>MN là đường trung bình của ΔABC

=>MN//BC và \(MN=\dfrac{BC}{2}\)

Ta có: MN//BC

D\(\in\)NM

Do đó; MD//CB

ta có: \(MN=\dfrac{CB}{2}\)

\(MN=\dfrac{MD}{2}\)

Do đó:CB=MD

Xét tứ giác BMDC có

BC//MD

BC=MD

Do đó: BMDC là hình bình hành

b: Xét tứ giác AMCD có

N là trung điểm chung của AC và MD

nên AMCD là hình bình hành

17 tháng 12 2023

Anh ơi anh giúp em câu hỏi em mới đăng với nha anh thanks anh nhiều lắm ạ

24 tháng 10 2023

A B C M N D

a/

Xét tứ giác BMCD có

NB=NC (gt)

ND=NM (gt)

=> BMCD là hbh (Tứ giác có 2 đường chéo cắt nhau tại trung điểm mỗi đường là hbh)

b/

Để BMCD là hình thoi \(\Rightarrow MD\perp BC\) (Hình thoi có 2 đường chéo vuông góc) (1)

Ta có

MA=MC (gt)

NB=NC (gt)

=> MN là đường trung bình của tg ABC => MN//AB => MD//AB (2)

Từ (1) và (2) \(\Rightarrow AB\perp BC\)

Để BMCD là hình thoi => tg ABC là tg vuông tại B

 

24 tháng 10 2023

a) Tứ giác BMCD có:

N là trung điểm của BC (gt)

N là trung điểm của DM (gt)

\(\Rightarrow\) BMCD là hình bình hành

b) Để BMCD là hình thoi thì \(BC\perp DM\)

Ta có:

M là trung điểm của AC (gt)

N là trung điểm của BC (gt)

\(\Rightarrow MN\) là đường trung bình của \(\Delta ABC\)

\(\Rightarrow MN\) // \(AB\)

\(\Rightarrow DM\) // \(AB\)

Mà \(DM\perp BC\)

\(\Rightarrow BC\perp AB\)

Vậy để BMCD là hình thoi thì \(\Delta ABC\) vuông tại B

Bài 1: Cho tứ giác ABCD có BC = AD và BC không song song với AD, gọi M, N,P, Q, E, F lần lượt là trung điểm của các đoạn thẳng AB, BC, CD, DA, AC, BD.a) Chứng minh tứ giác MEPF là hình thoi.b) Chứng minh các đoạn thẳng MP, NQ, EF cùng cắt nhau tại một điểm.c) Tìm thêm điều kiện của tứ giác ABCD để N, E, F, Q thẳng hàngBài 2: Cho tam giác ABC vuông tại A (AB<AC), M là trung điểm BC, từ M kẻđường thẳng...
Đọc tiếp

Bài 1: Cho tứ giác ABCD có BC = AD và BC không song song với AD, gọi M, N,
P, Q, E, F lần lượt là trung điểm của các đoạn thẳng AB, BC, CD, DA, AC, BD.
a) Chứng minh tứ giác MEPF là hình thoi.
b) Chứng minh các đoạn thẳng MP, NQ, EF cùng cắt nhau tại một điểm.
c) Tìm thêm điều kiện của tứ giác ABCD để N, E, F, Q thẳng hàng
Bài 2: Cho tam giác ABC vuông tại A (AB<AC), M là trung điểm BC, từ M kẻ
đường thẳng song song với AC, AB lần lượt cắt AB tạt E, cắt AC tại F
a) Chứng minh EFCB là hình thang
b) Chứng minh AEMF là hình chữ nhật
c) Gọi O là trung điểm AM. Chứng minh: E và F đối xứng qua O.
d) Gọi D là trung điểm MC. Chứng minh: OMDF là hình thoi
Bài 3: Cho tam giác ABC có AB<AC. Gọi M, N, P lần lượt là trung điểm của AB,
AC, BC. Vẽ đường cao AH của tam giác ABC. Tứ giác HMNP là hình gì.
Bài 4: Cho tứ giác ABCD có góc DAB = góc BCD = 120 0 . Tính số đo của hai góc
còn lại để ABCD là hình bình hành.
Bài 5: Cho hình bình hành ABCD. Trên đưởng chéo AC chọn hai điểm E và F sao
cho AE=EF=FC.
a) Tứ giác BEDF là hình gì?
b) Chứng minh CFDAEB .
c) Chứng minh CFBEAD .
Bài 6: Cho tam giác ABC cân tại A, đường cao AD. Gọi E là điểm đối xứng với D qua
trung điểm M của AC.
a) Tứ giác ADCE là hình gì? Vì sao?
b) Tứ giác ABDM là hình gì? Vì sao?
c) Tam giác ABC có thêm điều kiện gì thì ADCE là hình vuông?
d) Tam giác ABC có thêm điều kiện gì thì ABDM là hình thang cân?

5
2 tháng 3 2020

Bài 1:

A B C D M N P Q E F

a) Xét tam giác ABC có M là trung điểm của AB (gt) ,E là trung điểm của AC (gt)

\(\Rightarrow ME\)là đường trung bình tam giác ABC

\(\Rightarrow ME=\frac{1}{2}BC\left(tc\right)\left(1\right)\)

Xét tam giác ADC có E là trung điểm của AC (gt) ,P là trung điểm của DC (gt)

\(\Rightarrow PE\)là đường trung bình của tam giác ADC

\(\Rightarrow PE=\frac{1}{2}AD\left(tc\right)\left(2\right)\)

mà \(AD=BC\left(gt\right)\left(3\right)\)

Từ (1) , (2) và (3) \(\Rightarrow EM=PE\)

CMTT: \(PE=FP,FM=ME\)

\(\Rightarrow ME=EP=PF=FM\)

Xét tứ giác MEPF có:

\(ME=EP=PF=FM\left(cmt\right)\)

\(\Rightarrow MEPF\)là hình thoi ( dhnb)

 b) Vì \(MEPF\)là hình thoi (cmt)

\(\Rightarrow FE\)giao với MP tại trung điểm mỗi đường (tc)  (4)

Xét tam giác ADB có M là trung điểm của AB(gt) ,Q là trung điểm của AD (gt)

\(\Rightarrow MQ\)là đường trung bình của tam giác ADB

\(\Rightarrow MQ//DB,MQ=\frac{1}{2}DB\left(tc\right)\left(5\right)\)

Xét tam giác BDC có N là trung điểm của BC(gt) , P là trung điểm của DC(gt)

\(\Rightarrow NP\)là đường trung bình của tam giác BDC

\(\Rightarrow NP//DB,NP=\frac{1}{2}DB\left(tc\right)\left(6\right)\)

Từ (5) và (6) \(\Rightarrow MQ//PN,MQ=PN\)

Xét tứ giác MQPN có \(\Rightarrow MQ//PN,MQ=PN\)

\(\Rightarrow MQPN\)là hình bình hành (dhnb)

\(\Rightarrow MP\)giao QN tại trung điểm mỗi đường (tc) (7)

Từ (4) và (7) \(\Rightarrow MP,NQ,EF\)cắt nhau tại một điểm 

c) Xét tam giác ABD có Q là trung điểm của AD (gt), F là trung điểm của BD(gt)

\(\Rightarrow QF\)là đường trung bình của tam giác ADB

\(\Rightarrow QF//AB\left(8\right)\)

CMTT: \(FN//CD\)và \(EN//AB\)

Mà Q,F,E,N thẳng hàng 

\(\Rightarrow AB//CD\)

Vậy để Q,F,E,N thẳng hàng thì tứ giác ABCD phải thêm điều kiện  \(AB//CD\)


 

2 tháng 3 2020

Tối về mình làm nốt  nhé giờ mình có việc 

Bài 13: Qua đỉnh A của hình vuông ABCD ta kẻ hai đường thẳng Ax, Ay vuông gócvới nhau. Ax cắt cạnh BC tại điểm P và cắt tia đối của tia CD tại điểm Q. Ay cắt tiađối của tia BC tại điểm R và cắt tia đối của tia DC tại điểm S.a) Chứng minh các tam giác APS, AQR là các tam giác cân.b) Gọi H là giao điểm của QR và PS; M, N theo thứ tự là trung điểm của QR, PS.Chứng minh tứ giác AMHN là hình chữ...
Đọc tiếp

Bài 13: Qua đỉnh A của hình vuông ABCD ta kẻ hai đường thẳng Ax, Ay vuông góc
với nhau. Ax cắt cạnh BC tại điểm P và cắt tia đối của tia CD tại điểm Q. Ay cắt tia
đối của tia BC tại điểm R và cắt tia đối của tia DC tại điểm S.
a) Chứng minh các tam giác APS, AQR là các tam giác cân.
b) Gọi H là giao điểm của QR và PS; M, N theo thứ tự là trung điểm của QR, PS.
Chứng minh tứ giác AMHN là hình chữ nhật.
Bài 14: Cho tứ giác ABCD có M, N, P, Q lần lượt là trung điểm của AB, BC, CA,
AD.
a) Tứ giác MNPQ là hình gì?
b) Gọi M là trung điểm của DB, AD=6, AB=8. Cho AM=1/2DB
. Tính QM.
Bài 15: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của AB và AC.
a) Tứ giác BMNC là hình gì? Vì sao?
b) Lấy điểm E đối xứng với M qua N. Chứng minh tứ giác AECM là hình bình
hành.
c) Tứ giác BMEC là hình gì? Vì sao?
d) Tam giác ABC cần thêm điều kiện gì thì tứ giác AECM là hình vuông? Vẽ
hình minh hoạ.

0