giải bpt :
a,\(\frac{\sqrt{51-2x-x^2}}{1-x}< 1\)
b, \(\sqrt{x^2-5x-14}\ge2x-1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(\left[{}\begin{matrix}x\le-2\\x\ge7\end{matrix}\right.\)
- Với \(x\le-2\Rightarrow\left\{{}\begin{matrix}VT\ge0\\VP< 0\end{matrix}\right.\) BPT luôn đúng
- Với \(x\ge7\) hai vế ko âm, bình phương 2 vế:
\(\Leftrightarrow x^2-5x-14\ge4x^2-4x+1\)
\(\Leftrightarrow3x^2+x+15\le0\) (vô nghiệm)
Vậy nghiệm của BPT đã cho là \(x\le-2\)
a, Đặt\(\sqrt{x.\left(5-x\right)}=t\) \(\left(0\le t\right)\)
Bpt trở thành: \(-t^2+t+2< 0\)
<=> \(\left[{}\begin{matrix}t< -1\left(loai\right)\\t>2\end{matrix}\right.\)
Với t>2 =>\(\sqrt{x.\left(5-x\right)}>2\)
<=>\(-x^2+5x-4>0\)
<=>\(1< x< 4\)
<=>\(x\in\left(1;4\right)\)
b/ Hiển nhiên rằng vế phải không âm, do đó nghiệm của BPT chính là tất cả các giá trị làm cho biểu thức xác định
Vậy bạn chỉ cần tìm ĐKXĐ cho vế trái là xong (rất đơn giản)
ĐKXĐ: \(x\ge\dfrac{1}{5}\)
\(\Leftrightarrow2x^2+x-3+2x-\sqrt{5x-1}+\sqrt[3]{x-9}+2\le0\)
\(\Leftrightarrow\left(x-1\right)\left(2x+3\right)+\dfrac{4x^2-5x+1}{2x+\sqrt{5x-1}}+\dfrac{x-1}{\sqrt[3]{\left(x-9\right)^2}-2\sqrt[3]{x-9}+4}\le0\)
\(\Leftrightarrow\left(x-1\right)\left(2x+3+\dfrac{4x-1}{2x+\sqrt{5x-1}}+\dfrac{1}{\sqrt[3]{\left(x-9\right)^2}-2\sqrt[3]{x-9}+4}\right)\le0\)
\(\Leftrightarrow x-1\le0\)
\(\Rightarrow\dfrac{1}{5}\le x\le1\)
ĐKXĐ: \(x\ge\frac{1}{4}\)
\(\sqrt{5x+1}\le3\sqrt{x}+\sqrt{4x-1}\)
\(\Leftrightarrow5x+1\le9x+4x-1+6\sqrt{4x^2-x}\)
\(\Leftrightarrow3\sqrt{4x^2-x}\ge1-4x\)
Do \(x\ge1\Rightarrow\left\{{}\begin{matrix}1-4x\le0\\\sqrt{4x^2-x}\ge0\end{matrix}\right.\) \(\Rightarrow\) BPT luôn đúng
Vậy nghiệm của BPT là \(x\ge\frac{1}{4}\)
b/ ĐKXĐ: \(x\ge4\)
\(\Leftrightarrow\sqrt{2\left(x^2-16\right)}+x-3>7-x\)
\(\Leftrightarrow\sqrt{2\left(x^2-16\right)}>10-2x\)
- Với \(x>5\Rightarrow\left\{{}\begin{matrix}VT\ge0\\VP< 0\end{matrix}\right.\) BPT luôn đúng
- Với \(x\le5\) bình phương 2 vế:
\(2\left(x^2-16\right)>4\left(x-5\right)^2\)
\(\Leftrightarrow x^2-20x+66< 0\)
\(\Rightarrow10-\sqrt{34}< x< 10+\sqrt{34}\)
Vậy nghiệm của BPT là \(x>10-\sqrt{34}\)
a.
ĐKXĐ: \(x\ne-1\)
\(x^2+5x+2=\left(2x+2\right)\sqrt{x^2+x+2}\)
\(\Leftrightarrow\left(x^2+x+2\right)-2\left(x+1\right)\sqrt{x^2+x+2}+4x=0\)
Đặt \(\sqrt{x^2+x+2}=t>0\)
\(\Rightarrow t^2-2\left(x+1\right)t+4x=0\)
\(\Leftrightarrow t\left(t-2x\right)-2\left(t-2x\right)=0\)
\(\Leftrightarrow\left(t-2\right)\left(t-2x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=2\\t=2x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+x+2}=2\\\sqrt{x^2+x+2}=2x\left(x\ge0\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+x+2=4\\x^2+x+2=4x^2\left(x\ge0\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\\\end{matrix}\right.\)
b.
ĐKXĐ: \(x\ge-1\)
\(x^2-5x+14-4\sqrt{x+1}=0\)
\(\Leftrightarrow\left(x^2-6x+9\right)+\left(x+1-4\sqrt{x+1}+4\right)=0\)
\(\Leftrightarrow\left(x-3\right)^2+\left(\sqrt{x+1}-2\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-3=0\\\sqrt{x+1}-2=0\end{matrix}\right.\)
\(\Leftrightarrow x=3\)
b, \(\sqrt{x^{2^{ }}-5x-14}\ge2x-1\)
*TH1:
+, \(x^{2^{ }}-5x-14\ge0\)
+, \(2x-1< 0\)
*TH2:
+, \(2x-1\ge0\)
+, \(x^2-5x-14\ge\left(2x-1\right)^2\)
Câu b bạn giải theo 2 trường hợp này là được nhé