chứng minh nếu một đường thẳng cắt một trong hai đường thẳng song song thì sẽ cắt đường thẳng còn lại
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a đương nhiên sẽ cắt b nếu không cắt thì không có đường thẳng song song :)))
GT | a\(\perp\)b tại M a cắt c tại N b//c |
KL | a\(\perp\)c tại N |
Chứng minh định lí:
Ta có: b//c
=>\(\widehat{M_3}=\widehat{N_1}\)(hai góc so le trong)
mà \(\widehat{M_3}=90^0\)
nên \(\widehat{N_1}=90^0\)
=>a\(\perp\)c tại N
Ta có: a // b => E = I (hai góc so le trong)
Mà: E1 = \(\frac{E}{2}\)
I1 = \(\frac{I}{2}\)
=> E1 = E1 và có vị trí so le trong => m // n
a) Nếu một đường thẳng cắt hai đường thẳng sao cho có một cặp góc so le trong bằng nhau thì hai đường thẳng đó song song. (Dấu hiệu nhận biết hai đường thẳng song song)
b) Nếu hai đường thẳng phân biệt cùng vuông góc với một đường thẳng thứ ba thì chúng song song với nhau
Từ t/c :
Nếu đường thẳng a và đường thẳng b cùng vuông góc với 1 đường thẳng thì hai đường thẳng a và đường thẳng b song song với nhau.
=> đpcm.
dâm dê