Bài 1: Cho tam giác ABC (AB < AC) nhọn nội tiếp đường tròn tâm O. Trên cạnh BC lần lượt lấy hai điểm D và E (D nằm giữa B và E) sao cho DAB = EAC. Các tia AD và AE tương ứng cắt lại đường trong (O) tại I và J.
a) Chứng minh rằng phân giác của góc BAC đi qua điểm chính giữa của cung nhỏ IJ của đường tròn (O).
b) Chứng minh rằng: Tứ giác BCJI là hình thang cân.
c) Kẻ tiếp tuyến xy của đường tròn (O) tại điểm A. Chứng minh rằng đường thẳng xy cũng là tiếp tuyến của đường tròn ngoại tiếp tam giác ADE.
Bài 2 : Cho a, b, c là các số thực không âm thỏa mãn a + b + c = 1. Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P = a^2 + b^2 + c^2 – 3ab.