Phân tích đa thức thành nhân tử
x^3+(a+b+c)x^2+(ab+bc+ac)x+abc
Cần gấp các bạn giúp với mik tick choooo
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)
\(=\left(x+2\right)\left(x+5\right)\left(x+3\right)\left(x+4\right)-24\)
\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)
Đặt \(x^2+7x+11=t.\)Thay vào ta được :
\(\left(t+1\right)\left(t-1\right)-24\)
\(=t^2-1-24=t^2-25=\left(t+5\right)\left(t-5\right)\)
Thay \(t=x^2+7x+11\)Ta được :
\(\left(x^2+7x+11+5\right)\left(x^2+7x+11-5\right)\)
\(=\left(x^2+7x+16\right)\left(x^2+7x+6\right)\)
a) - Đặt \(A=\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)
+ Ta có: \(A=\left[\left(x+2\right)\left(x+5\right)\right].\left[\left(x+3\right).\left(x+4\right)\right]-24\)
\(\Leftrightarrow A=\left(x^2+7x+10\right).\left(x^2+7x+12\right)-24\)
- Đặt \(a=x^2+7x+10\)
+ Ta lại có: \(A=a.\left(a+2\right)-24\)
\(\Leftrightarrow A=a^2+2a-24\)
\(\Leftrightarrow A=\left(a^2-4a\right)+\left(6a-24\right)\)
\(\Leftrightarrow A=a.\left(a-4\right)+6.\left(a-4\right)\)
\(\Leftrightarrow A=\left(a-4\right).\left(a+6\right)\)
- Thay \(a=x^2+7x+10\)vào phương trình \(A\), ta có:
\(A=\left(x^2+7x+10-4\right).\left(x^2+7x+10+6\right)\)
\(\Leftrightarrow A=\left(x^2+7x+6\right).\left(x^2+7x+16\right)\)
\(\Leftrightarrow A=\left[\left(x^2+x\right)+\left(6x+6\right)\right].\left(x^2+7x+16\right)\)
\(\Leftrightarrow A=\left[x.\left(x+1\right)+6.\left(x+1\right)\right].\left(x^2+7x+16\right)\)
\(\Leftrightarrow A=\left(x+1\right).\left(x+6\right).\left(x^2+7x+16\right)\)
^_^ Chúc bạn hok tốt ^_^ !!#@##
a) Câu hỏi của a - Toán lớp 8 - Học toán với OnlineMath
b) Câu hỏi của c - Toán lớp 8 - Học toán với OnlineMath
1) \(ab\left(a+b\right)-bc\left(b+c\right)+ac\left(a-c\right)\)
\(=ab\left(a+b\right)-b^2c-bc^2+a^2c-ac^2\)
\(=ab\left(a+b\right)-c\left(b^2-a^2\right)-c^2\left(a+b\right)\)
\(=ab\left(a+b\right)-c\left(a+b\right)\left(a-b\right)-c^2\left(a+b\right)\)
\(=\left(a+b\right)\left(ab-ac+bc-c^2\right)\)
\(=\left(a+b\right)\left[a\left(b-c\right)+c\left(b-c\right)\right]\)
\(=\left(a+b\right)\left(b-c\right)\left(a+c\right)\)
\(ab\left(a-b\right)-ac\left(a+c\right)+bc\left(2a-b+c\right)\)
\(=ab\left(a-b\right)-ac\left(a+c\right)+bc\left[\left(a-b\right)+\left(a+c\right)\right]\)
\(=ab\left(a-b\right)-ac\left(a+c\right)+bc\left(a-b\right)+bc\left(a+c\right)\)
\(=\left(a-b\right)\left(ab+bc\right)+\left(a+c\right)\left(bc-ac\right)\)
\(=b\left(a-b\right)\left(a+c\right)-c\left(a+c\right)\left(a-b\right)\)
\(=\left(b-c\right)\left(a-b\right)\left(a+c\right)\)
\(=x^3+ax^2+bcx+abc+\left(b+c\right)x^2+a\left(b+c\right)x\)
\(=x^2\left(x+a\right)+bc\left(x+a\right)+\left(b+c\right)x\left(x+a\right)\)
\(=\left(x+a\right)\left(x^2+bc+\left(b+c\right)x\right)\)
\(=\left(x+a\right)\left(x^2+bx+cx+bc\right)\)
\(=\left(x+a\right)\left[x\left(x+b\right)+c\left(x+b\right)\right]\)
\(=\left(x+a\right)\left(x+b\right)\left(x+c\right)\)