K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 2 2020

Bổ xung \(\ge2\sqrt{2020}\)

22 tháng 2 2020

Chỗ cuối là 2019z2 nha

21 tháng 3 2020

ta có \(x+y+z=2019xyz=>2019x^2=\frac{x^2+xy+xz}{yz}\)

\(=>2019x^2+1=\frac{x^2+xy+xz+yz}{yz}=\frac{\left(x+y\right)\left(x+z\right)}{yz}=\left(\frac{x}{y}+1\right)\left(\frac{x}{z}+1\right)\)

\(=>\sqrt{2019x^2+1}=\sqrt{\left(\frac{x}{y}+1\right)\left(\frac{x}{z}+1\right)}\le\frac{1}{2}\left(\frac{x}{y}+\frac{x}{z}+2\right)=1+\frac{x}{2}\left(\frac{1}{y}+\frac{1}{z}\right)\)

(theo BDT cô -si)

\(=>\frac{x^2+1+\sqrt{2019x^2+1}}{x}\le\frac{x^2+1+1+\frac{x}{2}\left(\frac{1}{y}+\frac{1}{z}\right)}{x}=x+\frac{2}{x}+\frac{1}{2}\left(\frac{1}{y}+\frac{1}{z}\right)\)

tương tự \(\frac{y^2+1+\sqrt{2019y^2+1}}{z}\le y+\frac{2}{y}+\frac{1}{2}\left(\frac{1}{z}+\frac{1}{x}\right)\)

\(\frac{z^2+1+\sqrt{2019z^2+1}}{z}\le z+\frac{2}{z}+\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}\right)\)

=>.vt\(\le x+y+z+3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

chứng minh được \(\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\)

=>\(3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{3\left(xy+yz+zx\right)}{2019xyz}\le\frac{2019\left(x+y+z\right)^2}{x+y+z}=2019\left(x+y+z\right)\)

=>.vt\(\le2020\left(x+y+z\right)=2020.2019xyz=\)vt

=> dpcm

21 tháng 3 2020

Ta có: \(2019xyz=x+y+z\)

=> \(2019xy=\frac{x}{z}+\frac{y}{z}+1>1\)\(2019yz=\frac{y}{x}+\frac{z}{x}+1>1\)\(2019xz=\frac{x}{y}+\frac{z}{y}+1>1\)

Ta  lại có: \(x+y+z=2019xyz\)

=> \(2019x\left(x+y+z\right)=2019^2x^2yz\)

=> \(2019x^2+1=\left(2019^2x^2yz-2019xy\right)-\left(2019xz-1\right)\)

=> \(2019x^2+1=\left(2019xy-1\right)\left(2019xz-1\right)\le\frac{\left(2019xy+2019xz-2\right)^2}{4}\)

=> \(\sqrt{2019x^2+1}\le\frac{2019xy+2019xz-2}{2}\)

Tương tự : \(\sqrt{2019y^2+1}\le\frac{2019xy+2019yz-2}{2}\)

\(\sqrt{2019z^2+1}\le\frac{2019xz+2019yz-2}{2}\)

=> \(\frac{x^2+1+\sqrt{2019x^2+1}}{x}+\frac{y^2+1+\sqrt{2019y^2+1}}{y}+\frac{z^2+1+\sqrt{2019z^2+1}}{z}\)

\(\le\)\(\frac{x^2+1+\frac{2019xy+2019xz-2}{2}}{x}+\frac{y^2+1+\frac{2019xy+2019yz-2}{2}}{y}+\frac{z^2+1+\frac{2019xz+2019yz-2}{2}}{z}\)

\(=\frac{2x^2+2019xy+2019xz}{2x}+\frac{2y^2+2019xy+2019yz}{2y}+\frac{2z^2+2019xz+2019yz}{2z}\)

\(=x+\frac{2019}{2}y+\frac{2019}{2}z+y+\frac{2019}{2}x+\frac{2019}{2}z+z+\frac{2019}{2}x+\frac{2019}{2}y\)

\(=2020\left(x+y+z\right)=2020.2019xyz\)

Vậy có điều cần cm

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x=y=z\\x+y+z=2019xyz\end{cases}}\Leftrightarrow x=y=z=\frac{1}{\sqrt{673}}\)

18 tháng 2 2020

Ta có: \(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=2019\)

\(\Rightarrow\frac{x+y+z}{xyz}=2019\)

\(\Rightarrow x+y+z=2019xyz\)

\(\Rightarrow2019x^2=\frac{x^2+xy+xz}{yz}\)

\(\Rightarrow2019x^2+1=\frac{x^2+xy+xz+yz}{yz}=\frac{\left(x+y\right)\left(x+z\right)}{yz}\)

\(=\left(\frac{x}{y}+1\right)\left(\frac{x}{z}+1\right)\)

\(\Rightarrow\sqrt{2019x^2+1}=\sqrt{\left(\frac{x}{y}+1\right)\left(\frac{x}{z}+1\right)}\)\(\le\frac{1}{2}\left(\frac{x}{y}+\frac{x}{z}+2\right)=1+\frac{x}{2}\left(\frac{1}{y}+\frac{1}{z}\right)\)(cô -si)

\(\Rightarrow\frac{x^2+1+\sqrt{2019x^2+1}}{x}\le\frac{x^2+1+1+\frac{x}{2}\left(\frac{1}{y}+\frac{1}{z}\right)}{x}\)\(=x+\frac{2}{x}+\frac{1}{2}\left(\frac{1}{y}+\frac{1}{z}\right)\)

Tương tự ta có: \(\frac{y^2+1+\sqrt{2019y^2+1}}{y}\le y+\frac{2}{y}+\frac{1}{2}\left(\frac{1}{z}+\frac{1}{x}\right)\)

và \(\frac{z^2+1+\sqrt{2019z^2+1}}{z}\le z+\frac{2}{z}+\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}\right)\)

Cộng từng vế của các bđt trên, ta được:

\(\text{Σ}_{cyc}\frac{x^2+1+\sqrt{2019x^2+1}}{x}\le x+y+z+3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

Chứng minh được: \(\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\)

\(\Rightarrow3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{3\left(xy+yz+zx\right)}{xyz}=\frac{2019.3\left(xy+yz+zx\right)}{2019xyz}\)

\(\le\frac{2019\left(x+y+z\right)^2}{x+y+z}=2019\left(x+y+z\right)\)

\(\Rightarrow VT\le2020\left(x+y+z\right)=2020.2019xyz\)

Vậy \(\text{Σ}_{cyc}\frac{x^2+1+\sqrt{2019x^2+1}}{x}\le2019.2020xyz\left(đpcm\right)\)

21 tháng 3 2020

Theo bài ra ta có:

\(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=\frac{z}{xyz}+\frac{x}{xyz}+\frac{y}{xyz}=\frac{x+y+z}{xyz}=2019\)

\(\Rightarrow x+y+z=2019xyz\) 

\(\Rightarrow2019x^2=\frac{x^2+xy+xz}{yz}\)

\(\Rightarrow2019x^2+1=\frac{x^2+xy+xz+yz}{yz}=\frac{\left(x+y\right)\left(x+z\right)}{yz}=\left(\frac{x}{y}+1\right)\left(\frac{x}{z}+1\right)\)

\(\Rightarrow\sqrt{2019x^2+1}=\sqrt{\left(\frac{x}{y}+1\right)\left(\frac{x}{z}+1\right)}\le\frac{1}{2}\left(\frac{x}{y}+\frac{x}{z}+2\right)=1+\frac{x}{2}\left(\frac{1}{y}+\frac{1}{z}\right)\)(Theo BĐT Cosi)

\(\Rightarrow\frac{x^2+1+\sqrt{2019^2+1}}{x}\le\frac{x+1+1+\frac{x}{2}\left(\frac{1}{y}+\frac{1}{z}\right)}{x}=x+\frac{2}{x}+\frac{1}{2}\left(\frac{1}{y}+\frac{1}{z}\right)\)

Tương tự:

\(\frac{y^2+1+\sqrt{2019y^2+1}}{y}\le y+\frac{2}{y}+\frac{1}{2}\left(\frac{1}{z}+\frac{1}{x}\right)\)

\(\frac{z^2+1+\sqrt{2019z^2+1}}{z}\le z+\frac{2}{z}+\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}\right)\)

\(\Rightarrow VT\le x+y+z+3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

Chứng minh được: \(\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\)

\(\Rightarrow3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{3\left(xy+yz+zx\right)}{xyz}=\frac{2019\cdot3\left(xy+yz+zx\right)}{2019xyz}\le\frac{2019\left(x+y+z\right)^2}{x+y+z}\)\(=2019\left(x+y+z\right)\)
 

\(\Rightarrow VT\le2020\left(x+y+z\right)=2020\cdot2019xyz=VP\)

=> ĐPCM

25 tháng 5 2019

Em nghĩ nếu làm như Lê Hồ Trọng Tín thì dấu "=" không xảy ra -> sai nên em xin chia sẻ cách làm của mình.Mong được mọi người góp ý.

Theo BĐT AM-GM

\(\sqrt{2019x\left(y+2\right)}=\sqrt{673}.\sqrt{3.x\left(y+2\right)}\)

\(\le\frac{\sqrt{673}}{2}\left[3+x\left(y+2\right)\right]=\frac{\sqrt{673}}{2}\left(3+xy+2x\right)\)

Tương tự với hai BĐT còn lại và cộng theo vế ta được:

\(M\le\frac{\sqrt{673}}{2}\left[9+\left(xy+yz+zx\right)+2\left(x+y+z\right)\right]\)

\(\le\frac{\sqrt{673}}{2}\left[9+\frac{\left(x+y+z\right)^2}{3}+6\right]\le\frac{\sqrt{673}}{2}\left(9+3+6\right)=6=9\sqrt{673}\)

Dấu "=" xảy ra khi x =y = z  =1

Vậy...

25 tháng 5 2019

Theo BĐT AM-GM:

\(\sqrt{2019x\left(y+2\right)}\)\(\le\)\(\frac{1}{2}\)(2019x+y+2)

\(\sqrt{2019y\left(z+2\right)}\)\(\le\)\(\frac{1}{2}\)(2019y+z+2)

\(\sqrt{2019z\left(x+2\right)}\)\(\le\)\(\frac{1}{2}\)(2019z+x+2)

=>M​\(\le\)\(\frac{1}{2}\)[2019(x+y+z)+(x+y+z)+6]\(\le\)3033

Vậy MaxM=3033 <=>\(\hept{\begin{cases}2019x=y+2\\2019y=z+2\\2019z=x+2\end{cases}}\)

24 tháng 10 2019

Nhìn qua thấy bậc của bđt là không đồng bậc nên hơi căng đấy...

Chú ý: \(2019=\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=\frac{x+y+z}{xyz}\Rightarrow xyz=\frac{x+y+z}{2019}\)

\(LHS=\Sigma_{cyc}\frac{\sqrt{2019x^2+1}+1}{x}=\Sigma_{cyc}\frac{\sqrt{\frac{x}{y}+\frac{x^2}{yz}+\frac{x}{z}+1}+1}{x}\)( thay \(2019=\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\))

\(=\Sigma_{cyc}\frac{\sqrt{\left(\frac{x}{y}+1\right)\left(\frac{x}{z}+1\right)}+1}{x}=\Sigma_{cyc}\left[\sqrt{\frac{\left(\frac{x}{y}+1\right)}{x}.\frac{\left(\frac{x}{z}+1\right)}{x}}+\frac{1}{x}\right]\)

\(=\Sigma_{cyc}\sqrt{\left(\frac{1}{y}+\frac{1}{x}\right)\left(\frac{1}{z}+\frac{1}{x}\right)}+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\le\frac{1}{2}\left[4\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\right]+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)

\(=3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{3\left(xy+yz+zx\right)}{xyz}=\frac{3\left(xy+yz+zx\right)}{\frac{\left(x+y+z\right)}{2019}}=\frac{6057\left(xy+yz+zx\right)}{x+y+z}\)

\(\le\frac{6057.\frac{\left(x+y+z\right)^2}{3}}{x+y+z}=2019\left(x+y+z\right)\)(đpcm)

Đẳng thức xảy ra khi \(x=y=z=\sqrt{\frac{3}{2019}}\)

P/s: Check hộ t phát:3

24 tháng 10 2019

Đặt \(a=\frac{1}{x};b=\frac{1}{y};c=\frac{1}{z}\)thì bài toán thành

Cho: \(ab+bc+ca=2019\)

Chứng minh:

\(\sqrt{2019+a^2}+\sqrt{2019+b^2}+\sqrt{2019+c^2}+\left(a+b+c\right)\le2019\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

Ta có:

\(VT=\sqrt{ab+bc+ca+a^2}+\sqrt{ab+bc+ca+b^2}+\sqrt{ab+bc+ca+c^2}+\left(a+b+c\right)\)

\(VT=\sqrt{\left(a+b\right)\left(a+c\right)}+\sqrt{\left(b+a\right)\left(b+c\right)}+\sqrt{\left(c+a\right)\left(c+b\right)}+\left(a+b+c\right)\)

\(\le3\left(a+b+c\right)\)

\(VP=\left(ab+bc+ca\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(=2\left(a+b+c\right)+\left(\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\right)\)

\(\ge3\left(a+b+c\right)\)

Tới đây bí :(

1 tháng 6 2018

â

gh

j

17 tháng 2 2020

\(RHS\ge\frac{\left(x+y+z\right)^2}{\sqrt{5x^2+2xy+y^2}+\sqrt{5y^2+2yz+z^2}+\sqrt{5z^2+2zx+x^2}}\)

Thử chứng minh \(\sqrt{5x^2+2xy+y^2}\le\frac{3\sqrt{2}}{2}x+\frac{\sqrt{2}}{2}y\) cái này xem sao

khi đó:

\(RHS\ge\frac{9}{\frac{3\sqrt{2}}{2}\left(x+y+z\right)+\frac{\sqrt{2}}{2}\left(x+y+z\right)}=\frac{3}{2\sqrt{2}}\)

Dấu "=" xảy ra tại x=y=z=1

20 tháng 2 2020

Cần chứng minh BĐT sau : \(\frac{x^2}{\sqrt{5x^2+2xy+y^2}}\ge\frac{5x-y}{8\sqrt{2}}\)

\(\Leftrightarrow8\sqrt{2}x^2\ge\left(5x-y\right)\sqrt{5x^2+2xy+y^2}\) ( 1 )

Xét 5x - y \(\le\)\(\Rightarrow\)VT \(\ge\)0 ; VP \(\le\)\(\Rightarrow\)BĐT đã được chứng minh

Xét 5x - y \(\ge\)0 . Bình phương 2 vế của ( 1 ), ta được :

\(128x^4\ge\left(25x^2-10xy+y^2\right)\left(5x^2+2xy+y^2\right)\)

\(\Leftrightarrow128x^4\ge125x^4+10x^2y^2-8xy^3+y^4\)

\(\Leftrightarrow3x^4-10x^2y^2+8xy^3-y^4\ge0\)

\(\Leftrightarrow\left(3x^4-3xy^3\right)+\left(10xy^3-10x^2y^2\right)+\left(xy^3-y^4\right)\ge0\)

\(\Leftrightarrow3x\left(x-y\right)\left(x^2+xy+y^2\right)+10xy^2\left(y-x\right)+y^3\left(x-y\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)\left(3x^3+3x^2y+3xy^2-10xy^2+y^3\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)\left[\left(3x^3-3xy^2\right)+\left(3x^2y-3xy^2\right)-\left(xy^2-y^3\right)\right]\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\left(3x^2+6xy-y^2\right)\ge0\)( luôn đúng )

( Vì \(5x-y\ge0\Rightarrow x\ge\frac{y}{5}\)\(\Rightarrow3x^2+6xy-y^2\ge3.\left(\frac{y}{5}\right)^2+6.\frac{y}{5}.y-y^2=\frac{8}{25}y^2\ge0\)

Tương tự : \(\frac{y^2}{\sqrt{5y^2+2yz+z^2}}\ge\frac{5y-z}{8\sqrt{2}}\)\(\frac{z^2}{\sqrt{5z^2+2xz+x^2}}\ge\frac{5z-x}{8\sqrt{2}}\)

Cộng từng vế 3 BĐT lại với nhau, ta được : 

\(\frac{x^2}{\sqrt{5x^2+2xy+y^2}}+\frac{y^2}{\sqrt{5y^2+2yz+z^2}}+\frac{z^2}{\sqrt{5z^2+2xz+x^2}}\)

\(\ge\frac{5x-z+5y-z+5z-x}{8\sqrt{2}}=\frac{4\left(x+y+z\right)}{8\sqrt{2}}=\frac{3}{2\sqrt{2}}\)

Dấu "=' xảy ra khi x = y = z = 1

Vậy BĐT đã được chứng minh