K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

https://h.vn/hoi-dap/tim-kiem?q=Cho+tam+gi%C3%A1c+ABC+vu%C3%B4ng+t%E1%BA%A1i+A.%28AB%3CAC%29+%C4%91%C6%B0%E1%BB%9Dng+cao+AH.+Tr%C3%AAn+c%E1%BA%A1nh+BC+l%E1%BA%A5y+M+sao+cho+BM%3DBA.+T%E1%BB%AB+M+k%E1%BA%BB+%C4%91%C6%B0%E1%BB%9Dng+th%E1%BA%B3ng+vu%C3%B4ng+g%C3%B3c+v%E1%BB%9Bi+AC%28N+thu%E1%BB%99c+AC%29+c%2Fm%3A++a%29+tam+gi%C3%A1c+AHN+c%C3%A2n++b%29+BC%2BAH%3EAB%2BAC++c%29+2AC2-BC%3DCH2-BH2&subject=0

k bt giải nhờ mạng |~ mạng giải ~ thông cảm cho

29 tháng 2 2020

A B C H M N

a) Nối AM

Do BA = BM => △ABM cân tại A

=> BAM = BMA 

Ta có: BAM + MAN = 90o => BMA + MAN = 90o

Lại có: MAN + AMN = 90o (△MAN vuông tại N)

=> HMA = NMA

Xét △HMA và △NMA có:

MHA = MNA (= 90o)

AM: chung

HMA = NMA (cmt)

=> △HMA = △NMA (ch-gn)

=> AH = AN (2 cạnh tương ứng)

=> △AHN cân tại A

b) Xét △ABC vuông tại A

=> BC2 = AB2 + AC2 (định lí Pytago)

=> AB2 + AC2 + AH > AB2 + AC2

=> BC + AH > AB + AC

c) Câu này hình như phải là chứng minh 2AC2 - BC2 = CH2 - BH2 chứ nhỉ? Nếu vậy thì cách làm như sau:

Xét △HAC vuông tại H

=> AC2 = HC2 + HA2 (định lí Pytago)

=> HC2 = AC2 - HA2

Xét △BHA vuông tại H

=> AB2 = HB2 + HA2 (định lí Pytago)

=> HB2 = AB2 - HA2

Khi đó:

CH2 - BH2 = AC2 - HA2 - AB2 + HA2

=> CH2 - BH2 = AC2 - AB2

=> CH2 - BH2 = AC2 + AC2 - BC2 (đpcm)

27 tháng 12 2021

a: Xét ΔADB và ΔADC có

\(\widehat{BAD}=\widehat{CAD}\)

AD chung

\(\widehat{B}=\widehat{C}\)

Do đó: ΔADB=ΔADC

14 tháng 8 2019

Chọn D

Gọi F là trung điểm cạnh AD có 

 

Tam giác   ∆ E F C có

12 tháng 8 2017

Gọi F là trung điểm cạnh AD có

A B / / E F ⇒ A B , E C = E F , E C

Tam giác ∆ E F C  có

c o s ∠ F E C = E F 2 + E C 2 - F C 2 2 . E F . E C

Vậy góc giữa hai đường thẳng AB và EC bằng  60 °

Chọn đáp án D.

a; Xét ΔDAB vuông tại A và ΔDMB vuông tại M có

BD chung

góc ABD=góc MBD

=>ΔDAB=ΔDMB

b: D nằm giữa A và C

=>AD<AC
c: Xét ΔBKC có

CA,KM là đường cao

CA cắt KM tại D

=>D là trực tâm

=>BD vuông góc KC tại N

Xet ΔBKC có

BN vừa là phân giác, vùa là đường cao

=>ΔBKC cân tại B

a: ΔABC vuông tại A

b: góc B=2/3*90=60 độ

góc C=90-60=30 độ

Xét ΔABD có

AH vừa là đường cao, vừa là trung tuyến

góc B=60 độ

=>ΔABD đều

=>góc DAB=60 độ

=>góc DAC=góc DCA

=>DA=DC

Xét ΔDHA vuông tại H và ΔDEC vuông tại E có

DA=DC

góc ADH=góc CDE

=>ΔDHA=ΔDEC

=>DH=DE

 

a) Xét ΔAHB và ΔDHC có 

AH=DH(gt)

\(\widehat{AHB}=\widehat{DHC}\)(hai góc đối đỉnh)

HB=HC(H là trung điểm của BC)

Do đó: ΔAHB=ΔDHC(c-g-c)

b) Ta có: ΔAHB=ΔDHC(cmt)

nên \(\widehat{HAB}=\widehat{HDC}\)(hai góc tương ứng)

mà \(\widehat{HAB}\) và \(\widehat{HDC}\) là hai góc ở vị trí so le trong

nên CD//AB(Dấu hiệu nhận biết hai đường thẳng song song)

Ta có: CD//AB(cmt)

AB\(\perp\)AC(ΔABC vuông tại A)

Do đó: CD\(\perp\)AC(Định lí 2 từ vuông góc tới song song)