Chứng minh rằng:Tích của hai số tự nhiên liên tiếp chia hết cho 2
Chứng minh rằng:Tích của 3 số tự nhiên liên tiếp chia hết cho 6
làm nhanh nhé mik sắp phải nộp rồi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
--> a.(a+1) là số chẵn --> a(a+1).(a+2) chia hết cho 2
--> a.(a+1).(a+2) là số chẵn --> a.(a+1).(a+2) chia hết cho 2
Vậy tích 3 STNLT thì chi hết cho 2(1)
1. TRƯỜNG HỢP 1 : a = 3.k
Ta có : a.(a+1).(a+2) = 3.k.(3.k+1).(3.k+2)chia hết cho 3
2. TRƯỜNG HỢP 2 : a = 3.k+1
Ta có : a.(a+1).(a+2) = (3.k+1).(3.k+2).(3.k+3)
= (3.k+1).(3.k+2).3.(k+1) chia hết cho 3
3.TRƯỜNG HỢP 3 : a = 3.k+2
Ta có : a.(a+1).(a+2) = (3.k+2).(3.k3).(3.k+4)
= (3.k+2).(3.k+4).3.(k+1) chia hết cho 3
VẬY TÍCH 3 STNLT THÌ CHIA HẾT CHO 3(2)
Từ (1).(2) --> tích ba STNLT thì chia hết cho 6
Mình không có ý kiến về câu trả lời của bạn Nguyễn Vũ Hải Linh
Nhưng mình có góp ý là bạn nên thêm 1 câu là: tích 3 STNLT chia hết cho 3 và 2 mà 3 và 2 là hai số nguyên tốt cùng nhau nên tích 3 STNLT chia hết cho 6 thì hợp lí hơn
1. TRƯỜNG HỢP 1 : a = 3.k
Ta có : a.(a+1).(a+2) = 3.k.(3.k+1).(3.k+2)chia hết cho 3
2. TRƯỜNG HỢP 2 : a = 3.k+1
Ta có : a.(a+1).(a+2) = (3.k+1).(3.k+2).(3.k+3)
= (3.k+1).(3.k+2).3.(k+1) chia hết cho 3
3.TRƯỜNG HỢP 3 : a = 3.k+2
Ta có : a.(a+1).(a+2) = (3.k+2).(3.k3).(3.k+4)
= (3.k+2).(3.k+4).3.(k+1) chia hết cho 3
VẬY TÍCH 3 STNLT THÌ CHIA HẾT CHO 3 (2) --> tích ba STNLT thì chia hết cho
a)Gọi 3 số chẵn liên tiếp là 2k, 2k+2, 2k+4
Ta có: 2k(2k+2)(2k+4)=8k(k+1)(k+2)
Ta lại có: k, k+1,k+2 là 3 số nguyên liên tiếp nên \(k\left(k+1\right)\left(k+2\right)⋮2\)và \(k\left(k+1\right)\left(k+2\right)⋮3\)
vì (2,3)=1 nên \(k\left(k+1\right)\left(k+2\right)⋮2.3=6\)
lúc đó \(8k\left(k+1\right)\left(k+2\right)⋮8.6=48\)
Vậy tích của 3 số chẵn liên tiếp sẽ chia hết cho 48 (ĐPCM)
Gọi 2k ; 2k+2 là hai số chẵn liên tiếp với k là số nguyên
Tích của hai số này là 4k.(k+1)
Ta có k.(k+1) luôn chia hết cho 2 => 4k.(k+1) luôn chia hết cho 8
NHỚ K MÌNH NHA CHÚC BẠN HỌC GIỎI
Gọi hai số chẵn liên tieepslaf 2k và 2k+2(k thuộc N)
Ta có:2k.(k+2)=2k.2.(k+1)=4k.(k+1)
Vì k và k+1 là hai số tự nhiên liên tiếp nên k.(k+1)chia hết cho 2
do đó 4k.(k+1) chia hết cho 2.4
4k.(k+1) chia hết cho 8
Vậy tích hai số chẵn liên tiếp chia hết cho 8
3 dấu chia hết ở đầu bạn thay hộ mik là bằng dấu chia hết nhé
1:vì 2 số TNLT có 1 số lẻ & 1 số chẵn => trong 2 số đó sẽ có 1 số chia hết cho 2
1. Trong 2 số tự nhiên liên tiếp có ít nhất 1 số chia hết cho 2
=> tích 2 số đó chia hết cho 2.
2. Trong 2 số tự nhiên liên tiếp có ít nhất 1 số chia hết cho 2;
trong 3 số tự nhiên liên tiếp có it nhất 1 số chia hết cho 3
Mà (2;3) = 1
=> Tích 3 số đó chia hết cho 2.3 = 6.
Gọi tổng của 3 stn liên tiếp là:n+n+1+n+2
Ta có:
n+n+1+n+2=3n+3 chia hết cho 3 (đpcm)
Gọi tổng của 4 stn liên tiếp là:n+n+1+n+2+n+3
=4n+6 ko chia hết cho 4(đpcm)
b) Giar sử gọi 3 số tự nhiên liên tiếp là: a, a+1,a+2.
Theo đề bài ta có :
A = a(a + 1) (a + 2) + 6
Ta có 6 = 3x2 mà ( 3,2) = 1
A + 2 vì trong A số tự nhiên liên tiếp có một số chia hết cho 2
A + 3 vì trong A số tự nhiên liên tiếp có một số chia hết cho 3
Vậy tích của 3 STN liên tiếp chia hết cho 6.
Chứng minh rằng : Tích của hai số tự nhiên liên tiếp chia hết cho 2
a và b là 2 số tự nhiên liên tiếp
✽ Nếu a là chẵn, b là lẻ
⇒ a ⋮ 2 ⇒ a . b ⋮ 2
✽ Nếu a là lẻ, b là chẵn
⇒ b ⋮ 2 ⇒ a . b ⋮ 2
➤ Vậy a . b chia hết cho 2
Chứng minh rằng : Tích của 3 số tự nhiên liên tiếp chia hết cho 6
Gọi 3 số tự nhiên liên tiếp là a; a + 1; a + 2
☛ Chứng minh 3 số tự nhiên liên tiếp chia hết cho 3
✽ Nếu a chia hết 3
⇒ Tích ba số tự nhiên liên tiếp chia hết cho 3
✽ Nếu a chia cho 3 dư 1
⇒ a + 2 chia hết cho 3
⇒ Tích ba số tự nhiên liên tiếp chia hết cho 3
✽ Nếu a chia cho 3 dư 2
⇒ a + 1 chia hết cho 3
⇒ Tích ba số tự nhiên liên tiếp chia hết cho 3
☛ Chứng minh 3 số tự nhiên liên tiếp chia hết cho 2
✽ Nếu a chia hết 2
⇒ Tích ba số tự nhiên liên tiếp chia hết cho 2
✽ Nếu a chia cho 2 dư 1
⇒ a + 1 chia hết cho 2
⇒ Tích ba số tự nhiên liên tiếp chia hết cho 2
Tích ba số tự nhiên liên tiếp chia hết cho 2 và 3
➤ Tích ba số tự nhiên liên tiếp chia hết cho 6
Cảm ơn bạn Nguyễn Thị Thùy Trâm nhé