K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
25 tháng 2 2020

\(I\left(1;1\right)\) , bán kính \(R=2\)

Do \(sin\widehat{AIB}\le1\Rightarrow S_{IAB}=\frac{1}{2}IA.IB.sin\widehat{AIB}\le\frac{1}{2}IA.IB=\frac{1}{2}R^2=2\)

\(\Rightarrow S_{max}=2\) khi \(\widehat{AIB}=90^0\)

Gọi H là hình chiếu của I lên AB, áp dụng hệ thức lượng cho tam giác vuông AIB:

\(\frac{1}{IH^2}=\frac{1}{IA^2}+\frac{1}{IB^2}=\frac{2}{R^2}\Rightarrow IH=\frac{R}{\sqrt{2}}=\sqrt{2}\)

\(\Rightarrow d\left(I;AB\right)=\sqrt{2}=\frac{\left|1+1-m\right|}{\sqrt{1^2+1^2}}\Rightarrow\left|2-m\right|=2\Rightarrow\left[{}\begin{matrix}m=0\\m=4\end{matrix}\right.\)

23 tháng 12 2018

NV
24 tháng 1 2022

Đường tròn (C) tâm \(I\left(1;-2\right)\) bán kính \(R=3\)

a. Đường thẳng cắt đường tròn tại 2 điểm pb khi:

\(d\left(I;d\right)< R\Leftrightarrow\dfrac{\left|\sqrt{2}-2m+1-\sqrt{2}\right|}{\sqrt{2+m^2}}< 3\)

\(\Leftrightarrow\left(2m-1\right)^2< 9\left(m^2+2\right)\)

\(\Leftrightarrow8m^2+4m+17>0\) (luôn đúng)

Vậy đường thẳng luôn cắt đường tròn tại 2 điểm pb với mọi m

b. \(S_{IAB}=\dfrac{1}{2}IA.IB.sin\widehat{AIB}=\dfrac{1}{2}R^2.sin\widehat{AIB}\le\dfrac{1}{2}R^2\) do \(sin\widehat{AIB}\le1\)

Dấu "=" xảy ra khi \(sin\widehat{AIB}=1\Rightarrow\Delta IAB\) vuông cân tại I

\(\Rightarrow d\left(I;d\right)=\dfrac{R}{\sqrt{2}}\Leftrightarrow\dfrac{\left|2m-1\right|}{\sqrt{m^2+2}}=\dfrac{3}{\sqrt{2}}\)

\(\Leftrightarrow m^2+8m+16=0\Rightarrow m=-4\)

25 tháng 3 2023

phần a sao ra được 8m2+4m+17 vậy ạ

24 tháng 12 2017

Chọn C

.

nên phương trình có 2 nghiệm phân biệt.

Do đó hàm số có hai điểm cực trị .

Giả sử hàm số có hai điểm cực trị lần lượt là , với , là nghiệm của phương trình .

Thực hiện phép chia cho ta được : .

Khi đó ta có: .

Ta thấy, toạ độ hai điểm thoả mãn phương trình .

Do đó, phương trình đường thẳng qua hai điểm cực trị là .

Ta thấy luôn qua .

Đặt .

.

Xét hàm số , .

, .

Suy ra hàm số liên tục và đồng biến trên .

Do đó .

 

Vậy đạt giá trị lớn nhất .

27 tháng 2 2017

Chọn C

4 tháng 12 2017

6 tháng 1 2017

20 tháng 5 2017

Phương pháp tọa độ trong mặt phẳng