K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 2 2020

Nhận thấy tử và mẫu phân thức đều có tổng các hệ số bằng 0, Theo Bezout ta có : \(3x^3-7x^2+5x-1⋮x-1,2x^3-x^2-4x+3⋮x-1\)

Thực hiện phép chia ta sẽ có biểu thức

=\(\frac{\left(x-1\right)\left(3x^2-4x+1\right)}{\left(x-1\right)\left(2x^2+x-3\right)}=\frac{3x^2-4x+1}{2x^2+x-3}\).Ta lại thấy tử và mẫu có tổng các hệ số bằng 0, theo Bơ du chúng sẽ chia ht x-1.Thực hiện phép chia rồi rút gọn đc

\(\frac{3x-1}{2x+3}\)

`@` `\text {Ans}`

`\downarrow`

`1.`

\(\left(-4xy\right)\cdot\left(2xy^2-3x^2y\right)\)

`=`\(\left(-4xy\right)\left(2xy^2\right)+\left(-4xy\right)\left(-3x^2y\right)\)

`=`\(-8\left(x\cdot x\right)\left(y\cdot y^2\right)+12\left(x\cdot x^2\right)\left(y\cdot y\right)\)

`=`\(-8x^2y^3+12x^3y^2\)

`2.`

\(\left(-5x\right)\left(3x^3+7x^2-x\right)\)

`=`\(\left(-5x\right)\left(3x^3\right)+\left(-5x\right)\left(7x^2\right)+\left(-5x\right)\left(-x\right)\)

`=`\(-15x^4-35x^3+5x^2\)

`3.`

\(\left(3x-2\right)\left(4x+5\right)-6x\left(2x-1\right)\)

`=`\(3x\left(4x+5\right)-2\left(4x+5\right)-12x^2+6x\)

`=`\(12x^2+15x-8x-10-12x^2+6x\)

`=`\(\left(12x^2-12x^2\right)+\left(15x-8x+6x\right)-10\)

`=`\(13x-10\)

`4.`

\(2x^2\left(x^2-7x+9\right)\)

`=`\(2x^2\cdot x^2+2x^2\cdot\left(-7x\right)+2x^2\cdot9\)

`=`\(2x^4-14x^3+18x^2\)

`5.`

\(\left(3x-5\right)\left(x^2-5x+7\right)\)

`=`\(3x\left(x^2-5x+7\right)-5\left(x^2-5x+7\right)\)

`=`\(3x^3-15x^2+21x-5x^2+25x-35\)

`=`\(3x^3-20x^2+46x-35\)

C xem lại bài cuối ạ.

\(A=5x^3-7x^2+3x^3-4x^2+x^2-x^3+5x-1=7x^3-10x^2+5x-1\)

\(B=5x^3+3x^2-7x^4-5x^3+4x^2-x^4+3=-8x^4+7x^2+3\)

5 tháng 3 2022

\(A=7x^3-10x^2+5x-1\)

\(B=-8x^4+7x^2+3\)

16 tháng 11 2021

\(1,\\ a,=6x^4-15x^3-12x^2\\ b,=x^2+2x+1+x^2+x-3-4x=2x^2-x-2\\ c,=2x^2-3xy+4y^2\\ 2,\\ a,=7x\left(x+2y\right)\\ b,=3\left(x+4\right)-x\left(x+4\right)=\left(3-x\right)\left(x+4\right)\\ c,=\left(x-y\right)^2-z^2=\left(x-y-z\right)\left(x-y+z\right)\\ d,=x^2-5x+3x-15=\left(x-5\right)\left(x+3\right)\\ 3,\\ a,\Leftrightarrow3x\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\\ b,\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

16 tháng 11 2021

Câu 1

a)\(3x^2\left(2x^2-5x-4\right)=6x^4-15x^3-12x^2\)

b)\(\left(x+1\right)^2+\left(x-2\right)\left(x+3\right)-4x=x^2+2x+1+x^2+3x-2x-6-4x=2x^2-x-5\)

 

13 tháng 7 2019

Giải phương trình??? sử dụng Hooc-ne cho nhanh nhá :v

1) \(x^4-8x^2+4x+3=0\)

( dùng máy tính ta đoán được 1 nghiệm chính xác là -3 )

3 1 0 -8 4 3 1 -3 1 1 0

\(\Leftrightarrow\left(x+3\right)\left(x^3-3x^2+x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x^3-3x^2+x+1=0\left(2\right)\end{matrix}\right.\)

Tiếp tục dùng máy tính ta tìm được 1 nghiệm chính xác của pt ( 2 ) là 1

1 1 -3 1 1 1 -2 -1 0

\(\Leftrightarrow\left(x+3\right)\left(x-1\right)\left(x^2-2x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x-1=0\\x^2-2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=1\\x=1+\sqrt{2}\\x=1-\sqrt{2}\end{matrix}\right.\)

rồi mấy câu còn lại tương tự

a: \(=2x^3-14x^2-6x\)

c: \(=-10x^5-15x^4+25x^3\)

9 tháng 12 2021

a) 2x. (x2 – 7x -3)

= 2x3- 14x2- 6x

b) ( -2x3 + y2 -7xy). 4xy2 

= -8x4y2+ 4xy4- 28x2y3

c)(-5x3).(2x2+3x-5)

= -10x5-15x4+25x3

d) (2x2 - xy+ y2).(-3x3)

=-6x5+ 3x4y -3x3y2

e)(x2 -2x+3). (x-4) 

=x3-2x2+3x -4x2+8x-12

=x3-6x2+11x-12

f) ( 2x3 -3x -1). (5x+2)

=10x4-15x2-5x +4x3-6x-2

=10x4+4x3-15x2-11x-2

 

Bài 1 . cho hai đa thức: P(x) = 4x4 - 2x3 - 7x2 + 2x + 1/3 và Q(x) = x4 + 3x3 - 6x2 - x - 1/4a. Tính P(x) + Q(x);b. Tính P(x) - Q(x).Bài 2. cho đa thức: M(x) = x2 - 2x3 + x + 5 và N(x) = 2x3 - x - 6a. Tính M(2) b. Tìm đa thức A(x) sao cho A(x) = M(x) + N(x); A(x), tính B(x) = M(x) - N(x)c. Tìm nghiệm của đa thức A(x)Bài 3. Tìm nghiệm của các đa thức sau:a. 2x - 8                    b. 2x + 7                     c. 4 - x2                   d. 4x2 - 9 e. 2x2 - 6           ...
Đọc tiếp

Bài 1 . cho hai đa thức: P(x) = 4x- 2x3 - 7x2 + 2x + 1/3 và Q(x) = x4 + 3x3 - 6x2 - x - 1/4

a. Tính P(x) + Q(x);

b. Tính P(x) - Q(x).

Bài 2. cho đa thức: M(x) = x2 - 2x3 + x + 5 và N(x) = 2x3 - x - 6

a. Tính M(2) 

b. Tìm đa thức A(x) sao cho A(x) = M(x) + N(x); A(x), tính B(x) = M(x) - N(x)

c. Tìm nghiệm của đa thức A(x)

Bài 3. Tìm nghiệm của các đa thức sau:

a. 2x - 8                    b. 2x + 7                     c. 4 - x2                   d. 4x2 - 9 

e. 2x- 6                   f. x(x - 1)                    g. x + 2x                  h. x( x + 2 )

Bài 4. cho hai đa thức: f(x) = 2x+ 3x- x + 1 - x2 - x4 - 6x3

                                     g(x) = 10x3 + 3 - x4 - 4x3 + 4x - 2x2

a. Thu gọn đa thức: f(x), g(x) và sắp xếp các hạng tử của mỗi đa thức theo lũy thừa giảm dần của biến.

b. Tính h(x) = f(x) + g(x); K(x) = f(x) - g(x)

c. Tìm nghiệm của đa thức h(x)

Bài 5. Tìm nghiệm của các đa thức:

a. 9 - 3x                b. -3x + 4                 c. x- 9                   d. 9x- 4

e. x2 - 2                f. x( x - 2 )                g. x2 - 2x                  h. x(x2 + 1 )

1

Tách ra, dài quá mn đọc là mất hứng làm đó.

11 tháng 1 2017

Chọn C

Ta có A + B = (2x3 + x2 - 4x + 2x3 + 5) + (6x + 3x3 - 2x + x2 - 5)

= 7x3 + 2x2 .

29 tháng 8 2021

a) \(2x\left(x^2-7x-3\right)=2x.x^2-2x.7x-2x.3=2x^3-14x^2-6x\)

b) \(\left(-2x^3+y^2-7xy\right)4xy^2=\left(-2x^3\right)4xy^2+y^24xy^2-7xy.4xy^2=-8x^4y^2+4xy^4-28x^2y^3\)

c) \(\left(-5x^3\right)\left(2x^2+3x-5\right)=-5x^32x^2-5x^33x-5x^3.-5=-10x^5-15x^4+25x^3\)

d) \(\left(2x^2-xy+y^2\right)\left(-3x^3\right)=-3x^32x^2-3x^3.-xy-3x^3y^2=-6x^5+3x^4y-3x^3y^2\)

29 tháng 8 2021

e) \(\left(x^2-2x+3\right)\left(x-4\right)=x\left(x^2-2x+3\right)-4\left(x^2-2x+3\right)=x^3-2x^2+3x-4x^2+8x-12=x^3-6x^2+11x-12\)

f) \(\left(2x^3-3x-1\right)\left(5x+2\right)=5x\left(2x^3-3x-1\right)+2\left(2x^3-3x-1\right)=10x^4-15x^2-5x+4x^3-6x-2=10x^4+4x^3-15x^2-11x-2\)

1: Sửa đề: 3x-5

\(=\dfrac{-x^2\left(3x-5\right)-3\left(3x-5\right)}{3x-5}=-x^2-3\)

2: \(=\dfrac{5x^4-5x^3+14x^3-14x^2+12x^2-12x+8x-8}{x-1}\)

=5x^2+14x^2+12x+8

3: \(=\dfrac{5x^3+10x^2+4x^2+8x+4x+8}{x+2}=5x^2+4x+4\)

4: \(=\dfrac{\left(x^2-1\right)\left(x^2+1\right)-2x\left(x^2-1\right)}{x^2-1}=x^2+1-2x\)

5: \(=\dfrac{x^2\left(5-3x\right)+3\left(5-3x\right)}{5-3x}=x^2+3\)