Cho M = ( x - 1 )( x + 2 )( 3 - x ). Tìm x để M < 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
Để M<0 thì:
\(\hept{\begin{cases}x-1< 0\\x+2< 0\\3-x< 0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x< 1\\x-2\\x>3\end{cases}}\)
Không chắc lắm đâu
#Châu's ngốc
x={-2,1,3
cách khác,
⇔−M=(x−1)(x+2)(x−3)>0
x<−2⇒ x−1<0
x+2<0
x−3<0−M<0⇒M>0⇒.vN
−2<x<1⇒ x−1<0
x+2>0
x−3<0−M>0⇒M<0⇒.No:−2<x<1
−2<x<1⇒ x−1<0
x+2>0
x−3<0−M>0⇒M<0⇒.No:−2<x<1
x>3⇒ x−1>0
x+2>0
x−3>0−M>0⇒M<0⇒.vNo:x>3
Kết luận: 1<x<2x>3
1<x<2x>3
đổi -M để cho các nhân tử(x-1)(x+2)(x-3) cùng chiều x đỡ nhầm
a) \(\frac{\sqrt{x}-2}{3\sqrt{x}}=-1\)
=> \(-3\sqrt{x}=\sqrt{x}-2\)
=> \(4\sqrt{x}=2\)
=> \(x=\frac{1}{4}\)
b) \(\frac{\sqrt{x}-2}{3\sqrt{x}}
- Với \(m=1\) pt vô nghiệm (ktm)
- Với \(m\ne1\) pt có 2 nghiệm pb đều âm khi:
\(\left\{{}\begin{matrix}\Delta'=\left(m-1\right)^2+m\left(m-1\right)>0\\x_1+x_2=-2< 0\left(luôn-đúng\right)\\x_1x_2=\dfrac{-m}{m-1}>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(m-1\right)\left(2m-1\right)>0\\\dfrac{m}{m-1}< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m>1\\m< \dfrac{1}{2}\end{matrix}\right.\\0< m< 1\end{matrix}\right.\) \(\Rightarrow0< m< \dfrac{1}{2}\)
đầu tiên bn tính đenta
cho đenta lớn hơn hoặc = 0 thì pt có nghiệm
b, từ x1-2x2=5
=> x1=5+2x2
chứng minh đenta lớn hơn 0
theo hệ thức viet tính đc x1+x2=..
x1*x2=....
thay vào cái 1 rồi vào 2 là đc
\(\Delta=25-4m\)pt có 2 nghiệm <=> \(\Delta\ge0\Leftrightarrow25-4m\ge0\Leftrightarrow m\le\frac{25}{4}\)
áp dụng hệ thức vi ét ta có: \(x1+x2=5\) (1) ; \(x1.x2=m\)(2)
|x1-x2|=3
th1: x1-x2=3 <=> x1=3+x2 =>thế vào (1): x2+3+x2=5 <=> 2x2=2 <=> x2=1 =>x1=1+3=4 => x1.x2=m=1.4 => m=4(t/m đk)
th2: x1-x2=-3 <=> x1=-3+x2 => x2-3+x2=5 <=> x2=4 => x1=1 => m=1.4=4 (t/m đk)
=> pt có 2 nghiệm... <=> m=4
Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để được hỗ trợ tốt hơn.
Ta có:
Để M<0 thì:
\(\hept{\begin{cases}x-1< 0\\x+2< 0\\3-x< 0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x< 0\\x-2\\x>3\end{cases}}\)
#Châu's ngốc