K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 2 2020

Phương trình tào lao. Không giải được bạn nhé

18 tháng 4 2022

lớp 9=))???

18 tháng 4 2022

hong giải thì bín :v

1 tháng 4 2022

cho mik hỏi rằng là 3x2 + 4x = 0 hay  3x2 + 4x = 0

1 tháng 4 2022

 3x2 + 4x = 0

NV
9 tháng 3 2022

\(\Delta=\left(2m-1\right)^2-8\left(m-1\right)=4m^2-12m+9=\left(2m-3\right)^2\ge0\) ; \(\forall m\)

\(\Rightarrow\) Phương trình đã cho luôn có 2 nghiệm với mọi m

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-2m+1}{2}\\x_1x_2=\dfrac{m-1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2\left(x_1+x_2\right)=-2m+1\\4x_1x_2=2m-2\end{matrix}\right.\)

Cộng vế với vế:

\(\Rightarrow2\left(x_1+x_2\right)+4x_1x_2=-1\)

Đây là hệ thức liên hệ các nghiệm ko phụ thuộc m

5 tháng 3 2019

a) với m=3 phương trình đã cho có dạng

\(2x^2-6x+3+7=0\Leftrightarrow2x^2-6x+10=0\Leftrightarrow x^2-3x+5=0\circledast\)

ta có△=\(\left(-3\right)^2+4.1.5=-11< 0\)

⇒ phương trình \(\circledast\) vô nghiệm

Vậy phương trình đã cho vô nghiệm với m=3

b)phương trình có một nghiệm bằng -4

\(2.\left(-4\right)^2-6.\left(-4\right)+m+7=0\Leftrightarrow32+24+m+7=0\Leftrightarrow63+m=0\Leftrightarrow m=-63\)

Vậy m=-63 là giá trị cần tìm

10 tháng 4 2019

Còn câu c) đâu bạn

9 tháng 3 2023

a) \(2x^2-5x+1=0\)

\(\Delta=b^2-4ac\Rightarrow\left(-5\right)^2-4.2.1=17>0\)

Phương trình có 2 nghiệm phân biệt:

\(x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{-\left(-5\right)+\sqrt{17}}{2.2}=\dfrac{5+\sqrt{17}}{4}\)

\(x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{-\left(-5\right)-\sqrt{17}}{2.2}=\dfrac{5-\sqrt{17}}{4}\)

___________________________________________________

b) \(4x^2+4x+1=0\)

\(\Delta=b^2-4ac\Rightarrow4^2-4.4.1=0\)

Vậy phương trình có nghiệm kép:

___________________________________________________

c) \(5x^2-x+2=0\)

\(\Delta=b^2-4a\Rightarrow\left(-1\right)^2-4.5.2=-39\)

Vậy phương trình vô nghiệm.

9 tháng 3 2023

Phần b: 

Vậy pt có nghiệm kép:

\(x_1=x_2=\dfrac{-b}{2a}=\dfrac{-4}{2.4}=-\dfrac{1}{2}\)

1 tháng 1 2022

\(a,x^2-6x+5=0\\ \Rightarrow\left(x^2-5x\right)-\left(x-5\right)=0\\ \Rightarrow x\left(x-5\right)-\left(x-5\right)=0\\ \Rightarrow\left(x-1\right)\left(x-5\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=1\\x=5\end{matrix}\right.\)

\(b,2x^2+4x-8=0\\ \Rightarrow x^2+2x-4=0\\ \Rightarrow\left(x^2+2x+1\right)-5=0\\ \Rightarrow\left(x+1\right)^2-\sqrt{5^2}=0\\ \Rightarrow\left(x+1+\sqrt{5}\right)\left(x+1-\sqrt{5}\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=-1-\sqrt{5}\\x=-1+\sqrt{5}\end{matrix}\right.\)

\(c,4y^2-4y+1=0\\ \Rightarrow\left(2y-1\right)^2=0\\ \Rightarrow2y-1=0\\ \Rightarrow y=\dfrac{1}{2}\)

\(d,5x^2-x+2=0\)

Ta có:\(\Delta=\left(-1\right)^2-4.5.2=1-40=-39\)

Vì \(\Delta< 0\Rightarrow\) pt vô nghiệm

27 tháng 10 2021

\(\left|2x-5\right|+\left|2x^2-7x+5\right|=0\)

\(\left\{{}\begin{matrix}2x-5=0\\2x^2-7x+5=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}2x-5=0\\\left(2x-5\right)\left(x-1\right)=0\end{matrix}\right.\)

\(\Leftrightarrow x=\dfrac{5}{2}\)

27 tháng 10 2021

 

{2x−5=02x2−7x+5=0⇔{2x−5=0(2x−5)(x−1)=0

⇔x=52

a: Khi m=9 thì phương trình trở thành:

\(2x^2-19x+39=0\)

\(\Leftrightarrow2x^2-6x-13x+39=0\)

=>(x-3)(2x-13)=0

=>x=13/2 hoặc x=3

b: \(\text{Δ}=\left(2m+1\right)^2-4\cdot2\cdot\left(m^2-9m+39\right)\)

\(=4m^2+4m+1-8m^2+72m-312\)

\(=-4m^2+76m-311\)

\(=-\left(4m^2-76m+361-50\right)\)

\(=-\left(2m-19\right)^2+50\)

Để phương trình có hai nghiệm thì \(-\left(2m-19\right)^2+50>=0\)

\(\Leftrightarrow-\left(2m-19\right)^2>=-50\)

\(\Leftrightarrow\left(2m-19\right)^2< =50\)

hay \(\dfrac{-5\sqrt{2}+19}{2}< =m< =\dfrac{5\sqrt{2}+19}{2}\)

Theo Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2m+1}{2}\\x_1x_2=\dfrac{m^2-9m+39}{2}\end{matrix}\right.\)

Đến đây bạn chỉ cần kết hợp cái x1+x2 và x1=2x2 để lập hệ phương trình, xong sau đó bạn chỉ cần thay vào cái tích rồi tìm m là xong

a: Khi m=-2 thì phương trình trở thành \(x^2+2x-3=0\)

=>(x+3)(x-1)=0

=>x=-3 hoặc x=1

b: \(\text{Δ}=\left(-2\right)^2-4\left(m-1\right)=4-4m+4=-4m+8\)

Để phương trình có hai nghiệm phân biệt thì -4m+8>0

=>-4m>-8

hay m<2

Theo hệ thức Vi-et, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-2\\x_1x_2=m-1\end{matrix}\right.\)

Theo đề, ta có: 

\(\left\{{}\begin{matrix}x_1+x_2=-2\\x_1-2x_2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_2=-\dfrac{2}{3}\\x_1=2x_2=-\dfrac{4}{3}\end{matrix}\right.\)

Ta có: \(x_1x_2=m-1\)

\(\Leftrightarrow m-1=\dfrac{8}{9}\)

hay m=17/9(nhận)

4 tháng 2 2022

a. Thay m=-2 ta được: \(x^2+2x-2-1=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)

b. Để phương trình (*) có 2 nghiệm phân biệt thì \(\Delta=4-4\left(m-1\right)>0\Leftrightarrow1>m-1\Leftrightarrow m< 2\)

Áp dụng định lí Vi-et ta có: \(x_1+x_2=\dfrac{-2}{1}=-2\)

Ta có: \(\left\{{}\begin{matrix}x_1+x_2=-2\\x_1-2x_2=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=-\dfrac{4}{3}\\x_2=\dfrac{-2}{3}\end{matrix}\right.\)\(\Rightarrow x_1.x_2=\dfrac{m-1}{1}=\dfrac{-4}{3}.\dfrac{-2}{3}=m-1\Rightarrow m=\dfrac{17}{9}\)<2

Vậy m=\(\dfrac{17}{9}\)