K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 3 2020

bài này nói lại 1 lần k đến lớp 9 tầm lớp 7 nhé!

vì \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\)

áp dụng tc dãy tỉ số = nhau

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{a+b+c}=1\)

=> a=b=c

thay b=a ; c=a 

=>bt P= \(\frac{4a+6a+2017a}{4a-6a-2017a}\)

đến đây tự làm típ!

tích mình đi

làm ơn

rùi mình

tích lại

thanks

27 tháng 7 2018

k mk đi 

11 tháng 11 2017

Ta có:

\(\frac{a+1}{1+b^2}=a+1-\frac{\left(a+1\right)b^2}{1+b^2}\ge a+1-\frac{\left(a+1\right)b^2}{2b}=a+1-\frac{ab+b}{2}\left(1\right)\)

Tương tụ ta có:

\(\hept{\begin{cases}\frac{\left(b+1\right)}{1+c^2}\ge b+1-\frac{bc+c}{2}\left(2\right)\\\frac{\left(c+1\right)}{1+a^2}\ge c+1-\frac{ca+a}{2}\left(3\right)\end{cases}}\)

Từ (1), (2), (3) ta có:

\(M\ge a+b+c+3-\frac{ab+bc+ca+a+b+c}{2}\)

\(=3+3-\frac{ab+bc+ca+3}{2}\)

\(\ge\frac{9}{2}-\frac{\left(a+b+c\right)^2}{6}=3\)