Phân tích đa thức thành nhân tử
xy+3x+y^2+4y+3
bc(b-c)+2ac(2a-c)-2ab(2a+b)+4abc
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải :
\(B=2bc\left(b+2c\right)+2ac\left(c-2a\right)-2ab\left(a+2b\right)-7abc\)
\(B=2b^2c+4bc^2+2ac^2-4a^2c-2ab\left(a+2b\right)-7abc\)
\(B=abc+2b^2c-4a^2c-8abc-2ab\left(a+2b\right)+2ac^2+4bc^2\)
\(B=bc\left(a+2b\right)-4ac\left(a+2b\right)-2ab\left(a+2b\right)+2c^2\left(a+2b\right)\)
\(B=\left(a+2b\right)\left(bc-4ac-2ab+2c^2\right)\)
\(B=\left(a+2b\right)\left[c\left(2c+b\right)-2a\left(2c+b\right)\right]\)
\(B=\left(a+2b\right)\left(2c+b\right)\left(c-2a\right)\)
2bc(b + 2c) + 2ac(c - 2a) - 2ab(a + 2b) - 7abc
= 2b2c + 4bc2 + 2ac2 - 4a2c - 2ab(a + 2b) - 7abc
= 2b2c + abc + 4bc2 + 2ac2 - 4a2c - 8abc - 2ab(a + 2b)
= bc(2b + a) + 2c2(2b + a) - 4ac(a + 2b) - 2ab(a + 2b)
= (a + 2b)(bc + 2c2 - 4ac - 2ab)
= (a + 2b)[c(b + 2c) - 2a(2c + b)]
= (a + 2b)(b + 2c)(c - 2a)
a, \(4abc-8ab^2c=4abc\left(1-2b\right)\)
b, \(x^2\left(2a-1\right)+x\left(1-2a\right)=x^2\left(2a-1\right)-x\left(2a-1\right)\)
\(=x\left(x-1\right)\left(2a-1\right)\)
c, \(9a^4\left(a-2\right)+a^2\left(a-2\right)=a^2\left(9a^2+1\right)\left(a-2\right)\)
d, \(\left(a-4\right)\left(2a-1\right)-8a+4=\left(a-4\right)\left(2a-1\right)-4\left(2a-1\right)\)
\(=\left(a-8\right)\left(2a-1\right)\)
a) `4abc-8ab^2c=4abc(1-2b)`
b) `x^2 (2a-1)+x(1-2a) = x^2 (2a-1) -x(2a-1) = (2a-1)(x^2-x)=x(2a-1)(x-1)`
c) `9a^4 (a-2) +a^2 (a-2) = (a-2)(9a^4+a^2)=a^2 (a-2)(9a^2+1)`
d) `(a-4)(2a-1)-8a+4=(a-4)(2a-1)-4(2a-1)=(2a-1)(a-8)`