Cho tam giác ABC nhọn có 3 đường cao AH, BK, CI cắt nhau tại M. C/m: a) Tam giác AIK đồng dạng tam giác ACB b) Tam giác MIK đồng dạng tam giác MBC c) AIK AMK AKI AMI ˆ ˆ , ˆ ˆ d) AK.IM + AI.KM = AM.IK e) BM.BK + CM.CI = BC2 f) Trên đoạn thẳng BM và CM lấy các điểm E và F sao cho AEˆC AFˆB 90 . C/m: tam giác AEF cân
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác BHCD có
BH//CD
BD//CH
=>BHCD là hình bình hành
b: Xét ΔAKB vuông tại K và ΔAIC vuông tại I có
góc KAB chung
=>ΔAKB đồng dạng với ΔAIC
=>AK/AI=AB/AC
=>AK*AC=AB*AI; AK/AB=AI/AC
c: Xét ΔAKI và ΔABC có
AK/AB=AI/AC
góc KAI chung
=>ΔAKI đồng dạng với ΔABC
a) Xét ΔKHB vuông tại K và ΔIHC vuông tại I có
\(\widehat{KHB}=\widehat{IHC}\)(hai góc đối đỉnh)
Do đó: ΔKHB\(\sim\)ΔIHC(g-g)
a: Xet ΔIHB vuông tại H và ΔIKA vuông tại K có
góc HIB=góc KIA
=>ΔIHB đồng dạng với ΔIKA
=>IH/IK=IB/IA
=>IH*IA=IK*IB
b: Xet ΔBIA và ΔHIK có
IB/IH=IA/IK
góc BIA=góc HIK
=>ΔBIA đồng dạng với ΔHIK
c: AD là phân giác
=>BD/AB=CD/AC
=>BD/2=CD/3
=>3BD-2CD=0
mà BD-CD=-6
nên BD=12cm; CD=18cm
a) Xét ΔABK vuông tại K và ΔACI vuông tại I có
\(\widehat{BAK}\) chung
Do đó: ΔABK∼ΔACI(g-g)
Suy ra: \(\dfrac{AB}{AC}=\dfrac{AK}{AI}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AI\cdot AB=AK\cdot AC\)(đpcm)
b) Ta có: \(\dfrac{AB}{AC}=\dfrac{AK}{AI}\)(cmt)
nên \(\dfrac{AK}{AB}=\dfrac{AI}{AC}\)
Xét ΔAIK và ΔACB có
\(\dfrac{AK}{AB}=\dfrac{AI}{AC}\)(cmt)
\(\widehat{IAK}\) chung
Do đó: ΔAIK\(\sim\)ΔACB(c-g-c)
a, xét tam giác AEB và tam giác AIC có : ^A chung
^AIC = ^AEB = 90
=> tam giác AEB đồng dạng tam giác AIC (g-g)
b, tam giác AEB đồng dạng với tam giác AIC (câu a)
=> AE/AB = AI/AC (Đn)
xét tam giác AIE và tam giác ACB có : ^A chung
=> tam giác AIE đồng dạng với tam giác ACB (c-g-c)