Chứng minh rằng: \(\dfrac{y}{x-y}\) - \(\dfrac{x^3-xy^2}{x^2+y^2}\) (\(\dfrac{x}{x^2-2xy+y^2}\) - \(\dfrac{y}{x^2-y^2})\) = -1.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề: \(\dfrac{2}{xy}:\left(\dfrac{1}{x}-\dfrac{1}{y}\right)^2:\dfrac{x^2+y^2}{\left(x-y\right)^2}=\dfrac{2xy}{x^2+y^2}\)
Ta có: \(\dfrac{2}{xy}:\left(\dfrac{1}{x}-\dfrac{1}{y}\right)^2:\dfrac{x^2+y^2}{\left(x-y\right)^2}\)
\(=\dfrac{2}{xy}:\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{2}{xy}\right):\dfrac{x^2+y^2}{\left(x-y\right)^2}\)
\(=\dfrac{2}{xy}:\left(\dfrac{x^2+y^2}{x^2y^2}-\dfrac{2xy}{x^2y^2}\right):\dfrac{x^2+y^2}{\left(x-y\right)^2}\)
\(=\dfrac{2}{xy}:\dfrac{x^2-2xy+y^2}{\left(xy\right)^2}:\dfrac{x^2+y^2}{\left(x-y\right)^2}\)
\(=\dfrac{2}{xy}\cdot\dfrac{\left(xy\right)^2}{\left(x-y\right)^2}:\dfrac{x^2+y^2}{\left(x-y\right)^2}\)
\(=\dfrac{2xy}{\left(x-y\right)^2}:\dfrac{x^2+y^2}{\left(x-y\right)^2}\)
\(=\dfrac{2xy}{\left(x-y\right)^2}\cdot\dfrac{\left(x-y\right)^2}{x^2+y^2}\)
\(=\dfrac{2xy}{x^2+y^2}\)
Thật đấy ạ, nãy giờ ngồi nháp mãi vẫn không hiểu sao đề bắt chứng minh nó bằng 1 được:(
BĐT cần chứng minh tương đương:
\(x^4+y^4\ge x^3y+xy^3\)
\(\Leftrightarrow x^4-x^3y+y^4-xy^3\ge0\)
\(\Leftrightarrow x^3\left(x-y\right)-y^3\left(x-y\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)\left(x^3-y^3\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\left(x^2+xy+y^2\right)\ge0\) (luôn đúng)
Vậy BĐT đã cho đúng
Ta có bất đẳng thức $a^2+b^2 \geq \dfrac{(a+b)^2}{2}
$⇔2.(a^2+b^2) \geq (a+b)^2$
$⇔(a-b)^2 \geq 0$ (đúng)
Áp dụng bất đẳng thức trên cho $\dfrac{x}{y}$ và $\dfrac{y}{x}$ có:
$\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2} $
$\geq \dfrac{(\dfrac{x}{y}+\dfrac{y}{x})^2}{2}$
Hay $2.\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2} \geq (\dfrac{x}{y}+\dfrac{y}{x})^2$
Áp dụng bất đẳng thức Cauchy (Cô-si) có:
$\dfrac{x}{y}+\dfrac{y}{x} \geq 2.\sqrt[]{\dfrac{x}{y}.\dfrac{y}{x}}=2$
Nên $(\dfrac{x}{y}+\dfrac{y}{x}).(\dfrac{x}{y}+\dfrac{y}{x}) \geq 2.(\dfrac{x}{y}+\dfrac{y}{x})$
Hay $ (\dfrac{x}{y}+\dfrac{y}{x})^2 \geq 2.(\dfrac{x}{y}+\dfrac{y}{x})$
Suy ra $2.\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2} \geq 2.(\dfrac{x}{y}+\dfrac{y}{x})$
Hay $\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2} \geq (\dfrac{x}{y}+\dfrac{y}{x})(đpcm)$
Dấu $=$ xảy ra $⇔x=y$
Trước hết, ta đi chứng minh một bổ đề sau: Nếu \(a+b+c=0\) thì \(a^3+b^3+c^3=3abc\). Thật vậy, ta phân tích
\(P=a^3+b^3+c^3-3abc\)
\(P=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)
\(P=\left(a+b+c\right)\left[\left(a+b\right)^2+\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)
\(P=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\).
Hiển nhiên nếu \(a+b+c=0\) thì \(P=0\) hay \(a^3+b^3+c^3=3abc\), bổ đề được chứng minh.
Do \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\) nên áp dụng bổ đề, ta được \(\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}=\dfrac{3}{xyz}\).
Vì vậy \(\dfrac{yz}{x^2}+\dfrac{zx}{y^2}+\dfrac{xy}{z^2}=\dfrac{xyz}{x^3}+\dfrac{xyz}{y^3}+\dfrac{xyz}{z^3}\) \(=xyz\left(\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}\right)\) \(=xyz.\dfrac{3}{xyz}=3\). Ta có đpcm
Lời giải:
Giả sử $x>0; y< 0$. Khi đó:
\((xy-x^2)\sqrt{\frac{-y}{x}}=(y-x)x\sqrt{\frac{-y}{x}}=(y-x)\sqrt{-xy}\)
\((xy-y^2)\sqrt{\frac{-x}{y}}=(x-y)y\sqrt{\frac{-x}{y}}=(y-x)(-y)\sqrt{\frac{-x}{y}}=(y-x)\sqrt{(-y)^2.\frac{-x}{y}}=(y-x)\sqrt{-xy}\)
\(\Rightarrow (xy-x^2)\sqrt{\frac{-y}{x}}=(xy-y^2)\sqrt{\frac{-x}{y}}\Rightarrow \frac{xy-x^2}{\sqrt{\frac{-x}{y}}}=\frac{xy-y^2}{\sqrt{\frac{-y}{x}}}\) (đpcm)
x với y trái dấu thoi chứ ko phải số này bằng đối số kia đâu bạn
a,\(\frac{x^2+y^2-xy}{x^2-y^2}:\frac{x^3+y^3}{x^2+y^2-2xy} =\frac{x^2+y^2-xy}{(x-y)(x+y)}\frac{(x+y)^2}{(x+y) (x^2-xy+y^2)}=\frac{1}{x-y} \)
b,\(\frac{x^3y+xy^3}{x^4y}:(x^2+y^2)=\frac{xy(x^2+y^2)}{x^4y(x^2+y^2)}=\frac{1}{x^3} \)
c,\(\frac{x^2-xy}{y}:\frac{x^2-xy}{xy+y}:\frac{x^2-1}{x^2+y} =\frac{x(x-y)y(x+y)(x^2+y)}{yx(x-y)(x^2-1)} =\frac{(x^2+y)(x+y)}{x^2-1} \)
d,\(\frac{x^2+y}{y}:(\frac{z}{x^2}:\frac{xy}{x^2y})=\frac{x^2+y}{ y}:(\frac{z}{x^2}\frac{x^2y}{xy})=\frac{x^2+y}{y}\frac{z}{x} \)
Ta có: \(\dfrac{y}{x-y}-\dfrac{x^3-xy^2}{x^2+y^2}\cdot\left(\dfrac{x}{x^2-2xy+y^2}-\dfrac{y}{x^2-y^2}\right)\)
\(=\dfrac{y}{x-y}-\dfrac{x\left(x^2-y^2\right)}{x^2+y^2}\cdot\left(\dfrac{x\left(x+y\right)}{\left(x-y\right)^2\cdot\left(x+y\right)}-\dfrac{y\cdot\left(x-y\right)}{\left(x-y\right)^2\cdot\left(x+y\right)}\right)\)
\(=\dfrac{y}{x-y}-\dfrac{x\left(x-y\right)\left(x+y\right)}{x^2+y^2}\cdot\dfrac{x^2+xy-xy+y^2}{\left(x-y\right)^2\left(x+y\right)}\)
\(=\dfrac{y}{x-y}-\dfrac{x\cdot\left(x^2+y^2\right)}{\left(x^2+y^2\right)\cdot\left(x-y\right)}\)
\(=\dfrac{y}{x-y}-\dfrac{x}{x-y}\)
\(=\dfrac{y-x}{x-y}=\dfrac{-\left(x-y\right)}{x-y}=-1\)
\(a,\dfrac{1}{3x-3y}=\dfrac{x-y}{3\left(x-y\right)^2};\dfrac{1}{x^2-2xy+y^2}=\dfrac{3}{3\left(x-y\right)^2}\\ b,\dfrac{3}{x^2-3x}=\dfrac{6}{2x\left(x-3\right)};\dfrac{5}{2x-6}=\dfrac{5x}{2x\left(x-3\right)}\\ c,\dfrac{x}{x+3}=\dfrac{x^2-3x}{\left(x-3\right)\left(x+3\right)};\dfrac{1}{3-x}=\dfrac{-x-3}{\left(x-3\right)\left(x+3\right)};\dfrac{1}{x^2-9}=\dfrac{1}{\left(x-3\right)\left(x+3\right)}\)
\(d,\dfrac{1}{x^2+xy}=\dfrac{xy-y^2}{xy\left(x+y\right)\left(x-y\right)};\dfrac{1}{xy-y^2}=\dfrac{x^2+xy}{xy\left(x-y\right)\left(x+y\right)};\dfrac{2}{y^2-x^2}=\dfrac{-2xy}{xy\left(x-y\right)\left(x+y\right)}\)