Cho tam giác ABC cân ở A. Kẻ BD vuông góc AC, CF vuông góc AB. Gọi I là giao điểm của BD và CF.
A. Chứng minh rằng: BE = CD
B. AI là tia phân giác của góc BAC.
---MẤY ANH, CHỊ, BẠN THÔNG MINH GIÚP MÌNH VỚI A!!!---
---THANKS TRƯỚC Ạ---
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì tam giác ABC cân tại A (gt)
suy ra: góc ABC = góc ACB
hay góc EBC = góc DCB
Xét tam giác EBC và tam giác DCB có
góc BEC = góc CDB ( =90)
góc EBC = góc DCB (CMT)
BC chung
Suy ra tam giác EBC = tam giác DCB (ch-gn)
suy ra BE=CD (cctu)
Xét tg ABC có:
+ BD là đườg cao (BD vuông góc AC)
+ CE là đg cao (CE vuông góc AB)
Mà BD giao CE tại I (gt)
=> I là trực tâm
=> AI là đường cao
Xét tg ABC cân tai A có: AI là đường cao (cmt)
=> AI cũng là đường pg góc BAC ( Tc tg cân)
a)
Vì tam giác ABC cân tại A (gt)
suy ra: góc ABC = góc ACB
hay góc EBC = góc DCB
Xét tam giác EBC và tam giác DCB có
góc BEC = góc CDB ( =90)
góc EBC = góc DCB (CMT)
BC chung
Suy ra tam giác EBC = tam giác DCB (ch-gn)
suy ra BE=CD (cctu)
b) Xét tg ABC có:
+ BD là đườg cao (BD vuông góc AC)
+ CE là đg cao (CE vuông góc AB)
Mà BD giao CE tại I (gt)
=> I là trực tâm
=> AI là đường cao
Xét tg ABC cân tai A có: AI là đường cao (cmt)
=> AI cũng là đường pg góc BAC ( Tc tg cân)
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
góc BAD chung
=>ΔABD=ΔACE
b: Xét ΔADI vuông tại D và ΔAEI vuông tại E có
AI chung
AD=AE
=>ΔADI=ΔAEI
=>góc DAI=góc EAI
=>AI là phân giác của góc DAE
a: Xét ΔEBC vuông tại E và ΔDCB vuông tại D có
BC chung
góc EBC=góc DCB
=>ΔEBC=ΔDCB
b: Xét ΔKEB vuông tại E và ΔKDC vuông tại D có
EB=DC
góc KBE=góc KCD
=>ΔKEB=ΔKDC
c: Xét ΔAEK vuông tại E và ΔADK vuông tại D có
AK chung
KE=KD
=>ΔAEK=ΔADK
=>góc EAK=góc DAK
=>AK là phân giác của góc BAC
d: ΔABC cân tại A có AK là phân giác
nên AK là trung trực của BC
=>A,K,I thẳng hàng
Vì tam giác ABC cân tại A (gt)
suy ra: góc ABC = góc ACB
hay góc EBC = góc DCB
Xét tam giác EBC và tam giác DCB có
góc BEC = góc CDB ( =90)
góc EBC = góc DCB (CMT)
BC chung
Suy ra tam giác EBC = tam giác DCB (ch-gn)
suy ra BE=CD (cctu)
a, xét tam giác BEC và tam giác CDB có : BC chung
góc ABC = góc ACB do tam giác ABC cân tại A (gt)
góc BEC = góc CDB = 90
=> tam giác BEC = tam giác CDB (ch-gn)
b, tam giác BEC = tam giác CDB (Câu a)
=> góc IBC = góc ICB (đn)
=> tam giác IBC cân tại I (dh)
=> BI = IC (Đn)
xét tam giác AIB và tam giác AIC có : AI chung
AB = AC do tam giác ABC cân tại A (gt)
=> tam giác AIB = tam giác AIC (c-c-c)
=> góc BAI = góc CAI (đn) mà AI nằm giữa AB và AC
=> AI là pg của góc BAC (đn)
a, xét tam giác BEC và tam giác CDB có :
BC chung
góc ABC = góc ACB ( do tam giác ABC cân tại A )
góc BEC = góc CDB = 90độ
=> tam giác BEC = tam giác CDB (ch-gn)
b, tam giác BEC = tam giác CDB (CM câu a)
=> góc IBC = góc ICB
=> tam giác IBC cân tại I
=> BI = IC
xét tam giác AIB và tam giác AIC có :
AI chung
AB = AC ( tam giác ABC cân tại A )
=> tam giác AIB = tam giác AIC (c-c-c)
=> góc BAI = góc CAI
=> AI là pg của góc BAC