Cho \(x\) là số nguyên, chứng minh rằng \(\sqrt{23+x^{11}}\) không phải là số nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A = \(\sqrt{n}+\sqrt{n+4}\)
=> \(A^2=n+n+4+2\sqrt{n\left(n+4\right)}\) = \(2n+4+2\sqrt{n\left(n+4\right)}\)
Vì n nguyên dương nên 2n + 4 nguyên dương
Mặt khác n(n+4) >0 , không là số chính phương nên \(\sqrt{n\left(n+4\right)}\) , không phải số nguyên dương
=> \(2\left(\sqrt{n\left(n+4\right)}\right)\) không phải số nguyên dương
=> A2 không phải số nguyên dương => A không phải số nguyên dương ( đpcm)
============================
"Khai bút" mùng 1 ròi mới đi chơi đc. ^^
Giả sử \(\sqrt{x}\)là số hữu tỉ thì nó viết được dưới dạng:
\(\sqrt{x}=\frac{m}{n}\) với \(m,n\inℕ\), \(\left(m,n\right)=1\)
Do x không là số chính phương nên \(\frac{m}{n}\)không là số tự nhiên, do đó n > 1.
Ta có \(m^2=xn^2\). Gọi p là ước nguyên tố nào đó của n, thế thì \(m^2⋮p\), do đó\(m⋮p\). Như vậy p là ước nguyên tố của m và n, trái với (m,n) = 1
Suy ra \(\sqrt{x}\)là số vô tỉ
\(\Rightarrow\sqrt{x}-3\)là số vô tỉ
Vậy \(\frac{4}{\sqrt{x}-3}\)là số vô tỉ
ta thấy : các phân số của biểu thức E đều bé hơn 1.
Suy ra: biểu thức E >6.
Mà 6 là số nguyên dương .
nên biểu thức E không phải là số nguyên (đpcm)