K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2020

\(S=2+2^2+2^3+...+2^{100}\)

\(S=\left(2+2^2\right)+\left(2^3+2^4\right)+....+\left(2^{99}+2^{100}\right)\)

\(S=2\left(1+2\right)+2^3\left(1+2\right)+....+2^{99}\left(1+2\right)\)

\(S=2\cdot3+2^3\cdot3+....+2^{99}\cdot3\)

\(S=3\left(2+2^3+....+2^{99}\right)\)

\(\Rightarrow S⋮3\left(đpcm\right)\)

S có 100 lũy thừa cơ số 2, ta nhóm thành 50 cặp, mỗi cặp hai lũy thừa liền nhau

S = (2 + 2^2) + (2^3+ 2^4) + .......... + (2^99 + 2^100)

S = 2(1 +2) + 2^3(1 + 2) + ........... + 2^99(1+2)

S = 2.3 + 2^3.3 + .................. +2^99.3 (đặt thừa số chung)

các số hạng của S chia hết cho 3 => S chia hết cho 3

Tương tự cách trên nhưng bạn nhóm thành 25 cặp, mỗi cặp 4 lũy thừa cơ số 2 thì được kết quả chia hết cho 15

Sau khi đặt thừa số chung bạn thấy tổng này 1 + 2 + 2^2 + 2^3 = 15

=> S chia hết cho 15

16 tháng 12 2020
. .
16 tháng 12 2020

as molie

9 tháng 8 2017

S=1+7+7^2+7^3+...+7^100+7^101

   =(1+7)+7^2(1+7)+...+7^100(1+7)

   =8+7^2.8+...+7^100.8

   =8.(1+7^2+...+7^100) chia hết cho 8 

Vậy S chia hết cho 8

     

9 tháng 8 2017

a.S=4+4^2+4^3+4^4+...+4^99+4^100 chia hết cho 5

   S=(4+4^2)+(4^3+4^4)+...+(4^99+4^100)

   S=20+4^2*20+...+4^98

   S=20*(1+4^2+...+4^98) chia hết cho 5(đpcm)

 b.S=2+2^2+2^3+2^4+...+2^2009+2^2010CHIA HẾT CHO 6

    S=(2+2^2)+(2^3+2^4)+...+(2^2009+2^2010)

    S=6+2^2.*6+...+2^2008

    S=6*(1+2^2+...+2^2008)CHIA HẾT CHO 6

  

    

18 tháng 12 2021

a: \(A=2\left(1+2+2^2\right)+...+2^{19}\left(1+2+2^2\right)\)

\(=7\left(2+...+2^{19}\right)⋮7\)

22 tháng 2 2023

tự làm nha

 

18 tháng 12 2021

a: \(A=2\left(1+2+2^2\right)+...+2^{19}\left(1+2+2^2\right)\)

\(=7\left(2+...+2^{19}\right)⋮7\)

17 tháng 12 2021

a: \(A=2\left(1+2+2^2\right)+...+2^{19}\left(1+2+2^2\right)\)

\(=7\cdot\left(2+...+2^{19}\right)⋮7\)

3 tháng 1 2018

\(S=6+6^2+6^3+.......+6^{100}\)

\(=\left(6+6^2\right)+\left(6^3+6^4\right)+......+\left(6^{99}+6^{100}\right)\)

\(=6\left(6+6^2\right)+6^3\left(6+6^2\right)+.....+6^{99}\left(6+6^2\right)\)

\(=6.42+6^3.42+.........+6^{99}.42\)

\(=42\left(6+6^3+.........+6^{99}\right)⋮42\left(đpcm\right)\)

Ta có:

M=21+22+23+24+....+220⇔2.M=2.(21+22+23+24+....+220)⇔2M=2.21+2.22+2.23+2.24+....+2.220⇔2M=22+23+24+25+......+221⇒2M−M=(22+23+24+25+......+221)−(21+22+23+24+....+220)⇔M=221−21⇔M=2.220−2⇔M=2.(24)5−2⇔M=2.165−2M=21+22+23+24+....+220⇔2.M=2.(21+22+23+24+....+220)⇔2M=2.21+2.22+2.23+2.24+....+2.220⇔2M=22+23+24+25+......+221⇒2M−M=(22+23+24+25+......+221)−(21+22+23+24+....+220)⇔M=221−21⇔M=2.220−2⇔M=2.(24)5−2⇔M=2.165−2

6x6x luôn có chữ số tận cùng là 6 nên 165165 có chữ số tận cùng là 6.

Do đó, 2.1652.165 có chữ số tận cùng là 2

Suy ra 2.165−22.165−2 có chữ số tận cùng là 0

Hay 2.165−22.165−2 chia hết cho 10.

Vậy M chia hết cho 10.

dựa vô đó nha

nếu bn cần gấp thì dựa dô đó chứ mình còn ôn bài nên ko thể giải giúp bn. Thông cảm nha

12 tháng 8 2023

2S = 1 + 3 + 3² + 3³ + ... + 3¹¹

⇒ 6S = 3 + 3² + 3³ + 3⁴ + ... + 3¹²

⇒ 4S = 6S -  2S = (3 + 3² + 3³ + 3⁴ + ... + 3¹²) - (1 + 3 + 3² + 3³ + ... + 3¹¹)

= 3¹² - 1

= 531440

⇒ S = 531440 : 4

= 132860 ⋮ 10

Vậy S ⋮ 10

S=2+22+23+...+2100

S=(2+22)+(23+24)+....+(299+2100)

S=6+22(23+24)+....+298(2+22)

S=1.6+22.6+...+298.6  

S=6.(1+22+....+296)    chia hết cho 3

S=2+22+23+...+2100

S=(2+22+23+24)+....+(297+298+299+2100)

S=30+.....+296(2+22+23+24)

S=1.30+....+296.30

S=30.(1+....+296)     chia hết cho 15

10 tháng 3 2020

a,2 + 2^2 + 2^3 + ... + 2^100

<=> (2+2^2) + (2^3+2^4) + .... + (2^99+2^100)

<=> 2.(1+2) + 2^3.(1+2) +.....+ 2^99.(1+2)

<=>2.3 + 2^3.3 +...+2699.3

<=>3.(2+2^3+....+2^99)

=> S chia hết cho 3