Tìm x biết:\(2^{x-1}+2^{x-2}+2^{x-3}+...+2^{x-49}=2^{49}-1\)
giúp mk vs mn ơi,mk đang cần gấp lắm luôn í,mong những bn giỏi giúp mk
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\frac{62}{7}:x=\frac{29}{9}:\frac{3}{56}\)
\(\frac{62}{7}:x=\frac{1624}{27}\)
\(x=\frac{62}{7}:\frac{1624}{27}=\frac{837}{5684}\)
\(b,\frac{1}{5}:x=\frac{1}{5}-\frac{1}{7}\)
\(\frac{1}{5}:x=\frac{2}{35}\)
\(x=\frac{1}{5}:\frac{2}{35}=\frac{7}{2}\)
\(c,\frac{2}{3}.x-\frac{4}{7}=\frac{1}{7}\)
\(\frac{2}{3}.x=\frac{1}{7}+\frac{4}{7}=\frac{5}{7}\)
\(x=\frac{5}{7}:\frac{2}{3}=\frac{15}{14}\)
\(d,\frac{2}{7}-\frac{8}{9}.x=\frac{2}{3}\)
\(\frac{8}{9}.x=\frac{2}{7}-\frac{2}{3}=-\frac{8}{21}\)
\(x=-\frac{8}{21}:\frac{8}{9}=-\frac{3}{7}\)
\(e,\frac{4}{7}+\frac{5}{9}:x=\frac{1}{5}\)
\(\frac{5}{9}:x=\frac{1}{5}-\frac{4}{7}=-\frac{13}{35}\)
\(x=\frac{5}{9}:-\frac{13}{35}=\frac{175}{117}\)
\(i,\frac{2}{5}-\frac{2}{5}.x=\frac{2}{5}\)
\(\frac{2}{5}.\left(1-x\right)=\frac{2}{5}\)
\(1-x=\frac{2}{5}:\frac{2}{5}=1\)
\(x=1-1=0\)
\(g,\frac{2}{3}+\frac{1}{3}:x=-1\)
\(\frac{1}{3}:x=-1-\frac{2}{3}=-\frac{5}{3}\)
\(x=\frac{1}{3}:-\frac{5}{3}=-\frac{1}{5}\)
học tốt nha
\(\left(3x-1\right)^2-9^2=13\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-1=\sqrt{94}\\3x-1=-\sqrt{94}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\sqrt{94}+1}{3}\\x=\dfrac{-\sqrt{94}+1}{3}\end{matrix}\right.\)
-4.|x-1| + (1/2-2,5)2 = -3
-4.|x-1| + (-2)2 = -3
-4.|x-1| + 4 = -3
-4.|x-1| = -3 - 4
-4.|x-1| = -7
|x-1| = (-7) : (-4)
|x-1| = 7/4
TH1: x - 1 = 7/4 => x = 7/4 + 1 = 11/4
TH2: 1 - x = 7/4 => x = 1 - 7/4 = -3/4
Vậy x = {11/4; -3/4}
\(2^x:1+2^x:2+...+2^x:49=2^{49}-1\)
\(2^x.1+2^x.\frac{1}{2}+...+2^x.\frac{1}{49}=2^{49}-1\)
\(2^x.\left(1+\frac{1}{2}+...+\frac{1}{49}\right)=2^{49}-1\)
Đặt: \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{49}}\)
=> \(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{48}}\)
=> \(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{48}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^{49}}\right)\)
=> \(A=1-\frac{1}{2^{49}}=\frac{2^{49}-1}{2^{49}}\)
\(2^{x-1}+2^{x-2}+2^{x-3}+...+2^{x-49}=2^{49}-1\)
<=> \(\frac{2^x}{2}+\frac{2^x}{2^2}+\frac{2^x}{2^3}+...+\frac{2^x}{2^{49}}=2^{49}-1\)
<=> \(2^x\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{49}}\right)=2^{49}-1\)
<=> \(2^x.\frac{2^{49}-1}{2^{49}}=2^{49}-1\)
<=> \(2^x=2^{49}\)
<=> x = 49.