K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2021

1: BC=5cm

AH=2,4cm

30 tháng 11 2021

1: BC=5cm

AH=2,4cm

a:\(BC=\sqrt{4^2+3^2}=5\left(cm\right)\)

AH=4*3/5=2,4cm

b: ΔCAD cân tại C

mà CH là đường cao

nên CH là phân giác của góc ACD

Xét ΔCAB và ΔCDB có

CA=CD

góc ACB=góc DCB

CB chung

Do dó: ΔCAB=ΔCDB

=>góc CDB=90 độ

=>BD là tiếp tuyến của (C)

19 tháng 12 2022

A B C H D E I F K

1/

\(BC=\sqrt{AB^2+AC^2}\) (Pitago)

\(\Rightarrow BC=\sqrt{3^2+4^2}=5cm\)

\(AB^2=HB.BC\) (trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)

\(\Rightarrow HB=\dfrac{AB^2}{BC}=\dfrac{3^2}{5}=1,8cm\)

Xét tg vuông AHB có

\(HA=\sqrt{AB^2-HB^2}\) (Pitago)

\(\Rightarrow HA=\sqrt{3^2-1,8^2}=2,4cm\)

\(\sin\widehat{C}=\dfrac{AB}{BC}=\dfrac{3}{5}\) 

2/

Xét tg vuông AHC và tg vuông DHC có

HC chung

HA=HD (đường thẳng đi qua tâm đường tròn và vuông góc với dây cung thì chia đôi dây cung)

=> tg AQHC = tg DHC (Hai tg vuông có 2 cạnh góc vuông tương ứng bằng nhau) => AC=DC

Xét tg ABC và tg DBC có

AC=DC (cmt)

BC chung

BA=BD (bán kính (B))

=> tg ABC = tg DBC (c.c.c) \(\Rightarrow\widehat{BAC}=\widehat{BDC}=90^o\)

=> A và D cùng nhìn BC dưới hai góc bằng nhau \(=90^o\) => A và D cùng nằm trên đường tròn đường kính BC hay A; B; C; D cùng nằm trên 1 đường tròn

3/

\(\widehat{EAD}=90^o\) (góc nt chắn nửa đường tròn) \(\Rightarrow DA\perp EF\) (1)

\(BF\perp DE\) (gt) (2)

Từ (1) và (2) => I là trực tâm của tg DEF

\(\Rightarrow EK\perp DF\) (trong tg 3 đường cao đồng quy tại 1 điểm)

Gọi K' là giao của DF với (B) \(\Rightarrow\widehat{EK'F}=90^o\) (góc nt chắn nửa đường tròn) \(\Rightarrow EK'\perp DF\)

Như vậy từ E có 2 đường thẳng cùng vuông góc với DF => vô lý (Từ 1 điểm ngoài đường thẳng chỉ dựng được duy nhất 1 đường thẳng vuông góc với đường thẳng đã cho) => K trùng K' => K thuộc đường tròn (B)

Xét tg ABK có

BA=BK (bán kính (B)) => tg ABK cân tại B \(\Rightarrow\widehat{BAK}=\widehat{BKA}\) (góc ở đáy tg cân)

 

 

29 tháng 12 2023

4.1:

a: Ta có: ΔABC vuông tại A

=>\(BC^2=AB^2+AC^2\)

=>\(BC^2=8^2+6^2=100\)

=>\(BC=\sqrt{100}=10\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

=>\(AH\cdot10=6\cdot8=48\)

=>AH=48/10=4,8(cm)

Xét ΔABC vuông tại A có AH là đường cao

nên \(CH\cdot CB=CA^2\)

=>\(CH\cdot10=6^2=36\)

=>CH=36/10=3,6(cm)

4.2:

Ta có: ΔCAD cân tại C

mà CB là đường cao

nên CB là phân giác của góc ACD

Xét ΔCAB và ΔCDB có

CA=CD
\(\widehat{ACB}=\widehat{DCB}\)

CB chung

Do đó: ΔCAB=ΔCDB

=>\(\widehat{CAB}=\widehat{CDB}\)

mà \(\widehat{CAB}=90^0\)

nên \(\widehat{CDB}=90^0\)

=>BD là tiếp tuyến của (C)

4.3:

Xét (C) có

PA,PM là các tiếp tuyến

Do đó: PA=PM

Xét (C) có

QM,QD là các tiếp tuyến

Do đó: QM=QD

Chu vi tam giác BPQ là:

\(C_{BPQ}=BP+PQ+BQ\)

=BP+PM+BQ+QM

=BP+PA+BQ+QD

=BA+BD

=2BA

=2*8=16(cm)

18 tháng 12 2022

1: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)

AH=3*4/5=2,4(cm)

BH=3^2/5=1,8cm

CH=5-1,8=3,2cm

Xet ΔABC vuông tại A có sin C=AB/BC=3/5

nên góc C=37 độ

2: ΔBAD cân tại B

mà BH là đường cao

nên BH là phân giác của góc ABD

Xet ΔABC và ΔDBC co

BA=BD

góc ABC=góc DBC

BC chung

Do đó: ΔABC=ΔDBC

=>góc BDC=90 độ

=>CD là tiếp tuyến của (B)

19 tháng 12 2022

Cậu tự vẽ hình nhé

a) Xét △ABC vuông tại A, có đường cao AH

BC2=AB2 + AC(pytago)

BC2= 32 + 42

BC2 = \(\sqrt{9+16}\)

BC =5

Xét △ABC vuông tại A

AC2= BC x BH

42=5 x BH

BH= 16 : 5

BH = 3,2

Xét △ ABC vuông tại A

AB x AC = BC x AH

3 x 4 = 5 x AH

AH =12 :5

AH= 2,4Xét △ABC vuông tại A ta có:Sin C = \(\dfrac{AB}{BC}\)

Sin C = \(\dfrac{3}{5}\)

➩ góc C = 37o

b) △BAD cân tại B

➩BH là đường cao

➩BH là phân giác của \(\widehat{ABD}\)

  Xét △ ABC và △ BDC ta có:

➜ BA= BD

\(\widehat{ABC}\) =\(\widehat{BDC}\)

BC chung

➩△ABC = △BDC

➩ CD là t/t của B