Một chiếc thuyền khởi hành từ bến sông A sau 5h 20phút, một ca nô từ bến A đuổi theo và gặp thuyền tại vị trí B cách bến A 20km. Hãy tìm vận tốc của chiếc thuyền biết rằng trong 1h thì ca nô chạy nhanh hơn thuyền 12km.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi vận tốc thuyền là x (km/h)
Vận tốc cano là: x + 12 (km/h)
Thời gian thuyền đi là: \(\frac{20}{x}\left(h\right)\)
Thời gian cano đi là: \(\frac{20}{x+12}\left(h\right)\)
Theo đề bài ta có:
\(\frac{20}{x}-5-\frac{1}{3}=\frac{20}{x+12}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-15\left(l\right)\\x=3\end{cases}}\)
Bạn có thể giải chi tiết phương trình được không alibaba nguyễn
Gọi vận tốc của chiếc thuyền là : x (km/h; x>0) thì vận tốc Cano là x+12 (km/h).
Đổi 5h20 phút = 16 / 3 h
Quãng đường thuyền đi được sau 16/3h là : 16x/3
Thời gian để cano đuổi theo được thuyền là: \(\frac{\frac{16x}{3}}{\left(x+12\right)-x}=\frac{4x}{9}\)
Vận tốc của cano: \(x+12=20\div\frac{4x}{9}=\frac{45}{x}\Leftrightarrow x^2+12x-45=0\Rightarrow\orbr{\begin{cases}x=3\\x=-15\end{cases}}\)
Vậy vận tốc của thuyền là 3km/h
Mình sửa chỗ
Gọi vận tốc của thuyền là x ( km/h ) nha chứ ko phải x 9 km/h ) đâu thông cảm xíu
Gọi vận tốc của thuyền là x 9 km/h )
Vận tốc của ca nô là x + 12 ( km/h )
Thời gian thuyền đi : \(\frac{20}{x}\)
Thời gian ca nô đi : \(\frac{20}{x+12}\)
Đổi \(5h20'=\frac{16}{3}\left(h\right)\)
Vì ca nô đuổi khởi hành sau thuyền \(\frac{16}{3}\left(h\right)\)nên ta có phương trình :
\(\frac{20}{x}-\frac{20}{x+12}=\frac{16}{3}\)
\(\Leftrightarrow\)\(\frac{3.20\left(x+12\right)-3.20x}{3x\left(x+12\right)}=\frac{16x\left(x+12\right)}{3x\left(x+12\right)}\)
\(\Leftrightarrow\)\(16x^2+192-720=0\)
\(\Leftrightarrow\)\(\hept{\begin{cases}x=3\\x=-15\end{cases}}\) x = 3 ( nhận ) ; x = -15 ( loại )
Vậy vận tốc của thuyền là 3 km/h
Gọi x là vận tốc thuyền, t là thời gian từ khi cano khởi hành đến lúc gặp thuyền.
Đổi 2h40p = 2 + 2/3 = 8/3 giờ
=>
8x/3 + xt = 10
(x+12)t = 10
=>
8x/3 + xt = 10 (1)
t = 10/(x+12) (2)
Thay (2) vào (1)
=>
8x/3 + 10x/(x+12) = 10
=>
8x(x+12) + 30x = 30(x+12)
=> 8x2 + 96x + 30x = 30x + 360
=> 8x2 + 96x - 360 = 0
=> x2 + 12x - 45 = 0
=> x = 3 hoặc x = -15 (loại)
=> x = 3 km/h
Đổi : 5 giờ 20 phút = \(\frac{16}{3}\) giờ .
- Gọi vận tốc của chiếc ca nô là x ( km/h, x > 12 )
- Gọi vận tốc của chiếc thuyền là y ( km/h, y > 0 )
Theo đề bài trong 1h thì ca nô chạy nhanh hơn thuyền 12km nên ta có phương trình : \(x-y=12\left(I\right)\)
- Quãng đường thuyền chạy đến lúc ca nô xuất phát là : \(\frac{16y}{3}\left(km\right)\)
- Thời gian ca nô đến điểm gặp là : \(\frac{20}{x}\) ( giờ )
- Quãng đường thuyền chạy từ lúc ca nô xuất phát là : \(\frac{20y}{x}\left(km\right)\)
Theo đề bài một chiếc thuyền khởi hành từ bến sông A sau 5h 20phút, một ca nô từ bến A đuổi theo và gặp thuyền tại vị trí B cách bến A 20km nên ta có phương trình : \(\frac{16y}{3}+\frac{20y}{x}=20\left(II\right)\)
Từ ( I ) và ( II ) ta có hệ phương trình : \(\left\{{}\begin{matrix}x-y=12\\\frac{16y}{3}+\frac{20y}{x}=20\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=12+y\\\frac{16y}{3}+\frac{20y}{12+y}=20\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=12+y\\\frac{16y\left(12+y\right)}{3\left(12+y\right)}+\frac{60y}{3\left(12+y\right)}=20\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=12+y\\16y\left(12+y\right)+60y=60\left(12+y\right)\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=12+y\\192y+16y^2+60y=720+60y\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=12+y\\16y^2+192y-720=0\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=12+y\\16y^2-48y+240y-720=0\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=12+y\\16y\left(y-3\right)+240\left(y-3\right)=0\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=12+y\\16y\left(y-3\right)+240\left(y-3\right)=0\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=12+y\\\left(16y+240\right)\left(y-3\right)=0\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=12+y\\\left[{}\begin{matrix}y-3=0\\16y+240=0\end{matrix}\right.\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=12+y\\\left[{}\begin{matrix}y=3\left(TM\right)\\y=-15\left(KTM\right)\end{matrix}\right.\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=12+3=15\\y=3\end{matrix}\right.\) ( TM )
Vậy vân tốc của chiếc thuyền là 3km/h .
Gọi \(x\left(km/h;x>0\right)\) là vận tốc của thuyền, \(x>0\) là vận tốc của canô là \(\left(x+12\right)km/h\)
Thời gian thuyền đi trong \(20km:\frac{20}{x}h\)
Thời gian canô đi trong \(20km:\frac{20}{x+12}h\)
Biết thời gian canô khởi hành sau thuyền là \(5h20p=5\frac{1}{3}h\) nên ta có phương trình:
\(\frac{20}{x}-\frac{20}{x+12}=5\frac{1}{3}\)
\(\Leftrightarrow3.20\left(x+12\right)-60x=16x\left(x+12\right)\)
\(\Leftrightarrow x^2+12x-45=0\)
Giả pt ta được: \(\left\{{}\begin{matrix}x_1=3\left(tm\right)\\x=-15\left(ktm\right)\end{matrix}\right.\)
Vậy ........
Đổi : 5 giờ 20 phút = \(\frac{16}{3}\)giờ .
- Gọi vận tốc của chiếc ca nô là x ( km/h, x > 12 )
- Gọi vận tốc của chiếc thuyền là y ( km/h, y > 0 )
Theo đề bài trong 1h thì ca nô chạy nhanh hơn thuyền 12km nên ta có phương trình : x−y=12(I)
- Quãng đường thuyền chạy đến lúc ca nô xuất phát là : \(\frac{16y}{3}\)(km)
- Thời gian ca nô đến điểm gặp là : \(\frac{20}{x}\) ( giờ )
- Quãng đường thuyền chạy từ lúc ca nô xuất phát là : \(\frac{20y}{x}\)(km)
Theo đề bài một chiếc thuyền khởi hành từ bến sông A sau 5h 20phút, một ca nô từ bến A đuổi theo và gặp thuyền tại vị trí B cách bến A 20km nên ta có phương trình : \(\frac{16y}{3}+\frac{20y}{x}=20\)(II)
Từ ( I ) và ( II ) ta có hệ phương trình \(\left\{{}\begin{matrix}x-y=12\\\frac{16y}{3}+\frac{20y}{x}=20\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=12+y\\\frac{16y}{3}+\frac{20y}{12+y}=20\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=12+y\\\frac{16y\left(12+y\right)}{3\left(12+y\right)}+\frac{60y}{3\left(12+y\right)}=20\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=12+y\\16y\left(12+y\right)+60y=60\left(12+y\right)\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=12+y\\192y+16y^2+60y=720+60y\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=12+y\\16y^2+192y-720=0\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=12+y\\16y^2-48y+240y-720=0\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=12+y\\16y\left(y-3\right)+240\left(y-3\right)=0\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=12+y\\\left(16y+240\right)\left(y-3\right)=0\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=12+y\\\left[{}\begin{matrix}y-3=0\\16y+240=0\end{matrix}\right.\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=12+y\\\left[{}\begin{matrix}y=3\left(TM\right)\\y=-15\left(KTM\right)\end{matrix}\right.\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=12+3=15\\y=3\end{matrix}\right.\) ( TM )
Vậy vận tốc chiếc thuyền là 3 km/h .