x^2 + 2x + 7 = 0
x3 - x^2 -21x + 45 = 0
2x^3- 5x^2 + 8x - 3 = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(4-3x\right)\left(10x-5\right)=0\)
\(\Rightarrow\orbr{\begin{cases}4-3x=0\\10x-5=0\end{cases}\Rightarrow\orbr{\begin{cases}3x=4\\10x=5\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{4}{3}\\x=\frac{1}{2}\end{cases}}}\)
\(\left(7-2x\right)\left(4+8x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}7-2x=0\\4+8x=0\end{cases}\Rightarrow\orbr{\begin{cases}2x=7\\8x=-4\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{7}{2}\\x=-\frac{1}{2}\end{cases}}}}\)
rồi thực hiện đến hết ...
Brainchild bé ngây thơ qus e , ko thực hiện đến hết như thế đc đâu :>
\(\left(x-3\right)\left(2x-1\right)=\left(2x-1\right)\left(2x+3\right)\)
\(2x^2-7x+3=4x^2+4x-3\)
\(2x^2-7x+3-4x^2-4x+3=0\)
\(-2x^2-11x+6=0\)
\(2x^2+11x-6=0\)
\(2x^2+12x-x-6=0\)
\(2x\left(x+6\right)-\left(x+6\right)=0\)
\(\left(x+6\right)\left(2x-1\right)=0\)
\(x+6=0\Leftrightarrow x=-6\)
\(2x-1=0\Leftrightarrow2x=1\Leftrightarrow x=\frac{1}{2}\)
\(3x-2x^2=0\)
\(x\left(2x-3\right)=0\)
\(x=0\)
\(2x-3=0\Leftrightarrow2x=3\Leftrightarrow x=\frac{3}{2}\)
Tự lm tiếp nha
a. \(x^3-x^2-21x+45=0\Rightarrow\left(x^3+5x^2\right)-\left(6x^2+30x\right)+\left(9x+45\right)=0\)
\(\Rightarrow x^2\left(x+5\right)-6x\left(x+5\right)+9\left(x+5\right)=0\)
\(\Rightarrow\left(x+5\right)\left(x-3\right)^2=0\Rightarrow\orbr{\begin{cases}x=-5\\x=3\end{cases}}\)
Vậy x=-5 hoặc x=3
b. \(2x^3-5x^2+8x-3=0\Rightarrow\left(2x^3-x^2\right)-\left(4x^2-2x\right)+\left(6x-3\right)=0\)
\(\Rightarrow x^2\left(2x-1\right)-2x\left(2x-1\right)+3\left(2x-1\right)=0\)
\(\Rightarrow\left(2x-1\right)\left(x^2-2x+3\right)=0\Rightarrow2x-1=0\)do \(x^2-2x+3\ne0\forall x\)
\(\Rightarrow x=\frac{1}{2}\)
a)x3-x2=0
⇔x2(x-1)=0
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
b)3x2-5x=0
⇔ x(3x-5)=0
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{5}{3}\end{matrix}\right.\)
c)x3=x5
⇔ x3(1-x2)=0
⇔ x3(1-x)(1+x)=0
⇔\(\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)
d)(2x+7)2-4(2x+7)=0
⇔ (2x+7)(2x+3)=0
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-7}{2}\\x=\dfrac{-3}{2}\end{matrix}\right.\)
a) Ta có: \(x^3-x^2=0\)
\(\Leftrightarrow x^2\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
b) Ta có: \(3x^2-5x=0\)
\(\Leftrightarrow x\left(3x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{5}{3}\end{matrix}\right.\)
c) Ta có: \(x^3=x^5\)
\(\Leftrightarrow x^5-x^3=0\)
\(\Leftrightarrow x^3\left(x^2-1\right)=0\)
\(\Leftrightarrow x^3\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)
d) Ta có: \(\left(2x+7\right)^2-4\left(2x+7\right)=0\)
\(\Leftrightarrow\left(2x+7\right)\left(2x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-7}{2}\\x=\dfrac{-3}{2}\end{matrix}\right.\)
1.
<=> \(\left[{}\begin{matrix}4-3x=0\\10-5x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4}{3}\\x=2\end{matrix}\right.\)
2.
<=>\(\left[{}\begin{matrix}7-2x=0\\4+8x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=-\dfrac{1}{2}\end{matrix}\right.\)
3.
<=>\(\left[{}\begin{matrix}9-7x=0\\11-3x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{9}{7}\\x=\dfrac{11}{3}\end{matrix}\right.\)
4.
<=>\(\left[{}\begin{matrix}7-14x=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=2\end{matrix}\right.\)
5.
<=>\(\left[{}\begin{matrix}\dfrac{7}{8}-2x=0\\3x+\dfrac{1}{3}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{16}\\x=-\dfrac{1}{9}\end{matrix}\right.\)
6,7. ko đủ điều kiện tìm
a) ( x - 3)4 + ( x - 5)4 = 82
Đặt : x - 4 = a , ta có :
( a + 1)4 + ( a - 1)4 = 82
⇔ a4 + 4a3 + 6a2 + 4a + 1 + a4 - 4a3 + 6a2 - 4a + 1 = 82
⇔ 2a4 + 12a2 - 80 = 0
⇔ 2( a4 + 6a2 - 40) = 0
⇔ a4 - 4a2 + 10a2 - 40 = 0
⇔ a2( a2 - 4) + 10( a2 - 4) = 0
⇔ ( a2 - 4)( a2 + 10) = 0
Do : a2 + 10 > 0
⇒ a2 - 4 = 0
⇔ a = + - 2
+) Với : a = 2 , ta có :
x - 4 = 2
⇔ x = 6
+) Với : a = -2 , ta có :
x - 4 = -2
⇔ x = 2
KL.....
b) ( n - 6)( n - 5)( n - 4)( n - 3) = 5.6.7.8
⇔ ( n - 6)( n - 3)( n - 5)( n - 4) = 1680
⇔ ( n2 - 9n + 18)( n2 - 9n + 20) = 1680
Đặt : n2 - 9n + 19 = t , ta có :
( t - 1)( t + 1) = 1680
⇔ t2 - 1 = 1680
⇔ t2 - 412 = 0
⇔ ( t - 41)( t + 41) = 0
⇔ t = 41 hoặc t = - 41
+) Với : t = 41 , ta có :
n2 - 9n + 19 = 41
⇔ n2 - 9n - 22 = 0
⇔ n2 + 2n - 11n - 22 = 0
⇔ n( n + 2) - 11( n + 2) = 0
⇔ ( n + 2)( n - 11) = 0
⇔ n = - 2 hoặc n = 11
+) Với : t = -41 ( giải tương tự )
@Giáo Viên Hoc24.vn
@Giáo Viên Hoc24h
@Giáo Viên
@giáo viên chuyên
@Akai Haruma
\(x^3-2x^2+2x=0\)
\(\Rightarrow x\left(x^2-2x+2\right)=0\)
\(\Rightarrow x\left(x^2-2.x.1+1^2+1\right)=0\)
\(\Rightarrow x\left[\left(x-1\right)^2+1\right]=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\\left(x-1\right)^2+1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\\left(x-1\right)^2=-1\end{matrix}\right.\Rightarrow x=0\)
\(2x^3-5x^2+8x-5=0\)
\(\Rightarrow2x^3-3x^2-2x^2+5x+3x-5=0\)
\(\Rightarrow\left(2x^3-2x^2\right)-\left(3x^2-3x\right)+\left(5x-5\right)=0\)
\(\Rightarrow2x^2\left(x-1\right)-3x\left(x-1\right)+5\left(x-1\right)=0\)
\(\Rightarrow\left(x-1\right)\left(2x^2-3x+5\right)\)
https://www.mathway.com/vi/popular-problems/Algebra/242673
https://www.mathway.com/vi/Algebra
a) \(x^2+2x+7=0\)
\(\Leftrightarrow\left(x+1\right)^2=-6\) ( vô lý )
Vậy pt vô nghiệm
b) \(x^3-x^2-21x+45=0\)
\(\Leftrightarrow x^3-3x^2+2x^2-6x-15x+45=0\)
\(\Leftrightarrow\left(x-3\right)\left(x^2+2x-15\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left[\left(x+1\right)^2-4\right]=0\)
\(\Leftrightarrow\left(x-3\right)^2\left(x+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x+5=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=3\\x=-5\end{cases}}\)
Vậy pt có tập nghiệm \(S=\left\{3,-5\right\}\)