Cho a,b,c là độ dài 3 cạnh của 1 tam giác có chu vi bằng 1. C/m rằng: ab+ac+bc>a.b.c
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
a<b+ca<b+c
--> a+a<a+b+ca+a<a+b+c
--> 2a<22a<2
--> a<1a<1
Tương tự ta có : b<1,c<1b<1,c<1
Suy ra: (1−a)(1−b)(1−c)>0(1−a)(1−b)(1−c)>0
⇔ (1–b–a+ab)(1–c)>0(1–b–a+ab)(1–c)>0
⇔ 1–c–b+bc–a+ac+ab–abc>01–c–b+bc–a+ac+ab–abc>0
⇔ 1–(a+b+c)+ab+bc+ca>abc1–(a+b+c)+ab+bc+ca>abc
Nên abc<−1+ab+bc+caabc<−1+ab+bc+ca
⇔ 2abc<−2+2ab+2bc+2ca2abc<−2+2ab+2bc+2ca
⇔ a2+b2+c2+2abc<a2+b2+c2–2+2ab+2bc+2caa2+b2+c2+2abc<a2+b2+c2–2+2ab+2bc+2ca
⇔ a2+b2+c2+2abc<(a+b+c)2−2a2+b2+c2+2abc<(a+b+c)2−2
⇔ a2+b2+c2+2abc<22−2a2+b2+c2+2abc<22−2 , (do a+b=c=2a+b=c=2 )
⇔ dpcm
Lời giải:
Coi độ dài cạnh AB là 3 phần thì độ dài cạnh AC là 4 phần, độ dài cạnh BC là 5 phần.
Tổng số phần bằng nhau: $3+4+5=12$ (phần)
Độ dài cạnh AB: $144:12\times 3=36$ (cm)
Độ dài cạnh AC: $144:12\times 4=48$ (cm)
Diện tích tam giác $ABC$: $36\times 48:2=864$ (cm2)
Bài 1:
a: AB+AC=75-45=30(cm)
b: AB=(30+4):2=17(cm)
=>AC=13cm
\(S=17\cdot13=221\left(cm^2\right)\)
Bài 2:
a: BC=67-47=20(cm)
b: \(S=\dfrac{15\cdot20}{2}=15\cdot10=150\left(cm^2\right)\)
bo deo biet
Vì a, b, c là độ dài của 3 cạnh tam giác \(\Rightarrow a,b,c>0\)
Do chu vi của tam giác bằng 1 \(\Rightarrow a+b+c=1\Rightarrow b+c=1-a\)
Giả sử : \(ab+ac+bc>a\cdot b\cdot c\)
\(\Rightarrow ab+ac+bc-abc>0\)
\(\Rightarrow a\left(b+c\right)+bc\left(1-a\right)>0\Rightarrow a\left(b+c\right)+bc\left(b+c\right)>0\)
\(\Rightarrow\left(b+c\right)\left(a+bc\right)>0\)( thỏa mãn vì \(a,b,c>0\))
Vậy \(ab+bc+ac>a\cdot b\cdot c\)( ĐPCM )