K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 1: 

a: p=3 thì 3+2=5 và 3+10=13(nhận)

p=3k+1 thì p+2=3k+3(loại)

p=3k+2 thì p+10=3k+12(loại)

b: p=3 thì p+10=13 và p+20=23(nhận)

p=3k+1 thì p+20=3k+21(loại)

p=3k+2 thì p+10=3k+12(loại)

2.

p là số nguyên tố > 3 => p lẻ p + d là số nguyên tố => p + d lẻ mà p lẻ => d chẵn => d chia hết cho 2 +) Xét p = 3k + 1 Nếu d chia cho 3 dư 1 => d = 3m + 1 => p + 2d = 3k + 1 + 2. (3m +1) = 3k + 6m + 3 chia hết cho 3 => không là số nguyên tố Nếu d chia cho3 dư 2 => d = 3m + 2 => p +d = 3k + 1 + 3m + 2 = 3k + 3m + 3 => p + d không là số nguyên tố => d chia hết cho 3 +) Xét p = 3k + 2 Nếu d chia cho 3 dư 1 => d = 3m + 1 => p + d = 3k + 2 + 3m + 1 = 3k + 3m + 3 => p + d không là số ngt Nếu d chia cho 3 dư 2 => d = 3m + 2 => p + 2d = 3k + 6m + 6 => p + 2d không là số ngt => d chia hết cho 3 Vậy d chia hết cho cả 2 và 3 => d chia hết cho 6

26 tháng 10 2016

P=5 ( P>3; P+8=13 ;là số nguyên tố)

5+10=15 là hợp số => P+8 là hợp số

25 tháng 10 2019

Do p là số nguyên tố lớn hơn 3 nên p có dạng 3k+1 hoặc 3k+2 (k thuộc N*)

Nếu p=3k+1 (k thuộc N*) thì p+8=3k+9=3(k+3) chia hết cho 3 và lớn hơn 3 là hợp số       (LOẠI)

=> p=3k+2

=> p+10=3k + 12= 3(k+4) là hợp số (đpcm)

30 tháng 12 2019

Đoạn p,q là p mũ 4 và q mũ 4 nha
 

30 tháng 12 2019

em mớ lớp 5 nên không biết

11 tháng 2 2016

bai toan nay kho qua

13 tháng 2 2016

Giả sử p là 1 số nguyên tố >3, do p không chia hết cho 3 nên p có dạng 3k + 1 hoặc 3k + 2 nhưng do p +4 là số nguyên tố nên p không thể có dạng 3k + 2 vậy p có dạng 3k +1. Vậy p + 8 = 3k + 9 chia hết cho 3 nên nó là hợp số. 

13 tháng 2 2016

p là snt > 3 nên p=3k+1 hoặc 3k+2

Xét p=3k+1, p+4=3k+1+4=3k+5( thỏa mãn là snt theo đề bài)

Xét p=3k+2, p+4=3k+2+4=3k+6=3(k+2) là hợp số, loại

Vậy p=3k+1, p+8=3k+1+8=3k+9=3(k+3) là hợp số ( đpcm)

16 tháng 4 2017

Do \(p\) là số nguyên tố \(>3\) nên :

\(\Rightarrow\left[{}\begin{matrix}p=6k+1\\p=6k+5\end{matrix}\right.\) \(\left(k\in N\right)\)

+) Với \(p=6k+5\) thì :

\(p+4=\left(6k+5\right)+4=6k+9⋮3\) \(\left(loại\right)\) \(\rightarrow\) Do \(p+4\) là số nguyên tố

\(\Rightarrow p=6k+1\).Vậy khi đó :

\(p+8=\left(6k+1\right)+8=6k+9⋮3\) (thỏa mãn \(p+8\) là hợp số )

\(\Rightarrowđpcm\)

~ Học tốt ~

20 tháng 1 2018

bài này trong sách phát triển có đấy