K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2022

Bài 2: 

Ta có: 2a2+2b2=(a2+2ab+b2)+(a2-2ab+b2)

                        =(a+b)2+(a-b)2 là tổng 2 số chính phương

⇒2a2+2b2 là tổng của 2 số chính phương(đpcm)

8 tháng 8 2018

lam thế  nao vậy?

4 tháng 6 2023

Giả sử \(y\) là số lẻ

Đặt \(\left\{{}\begin{matrix}x^2-y=m^2\\x^2+y=n^2\end{matrix}\right.\left(m,n\inℕ;m< n\right)\)

\(\Rightarrow2y=n^2-m^2\) \(\Rightarrow n^2-m^2\) chia hết cho 2 nhưng không chia hết cho 4.

 Thế nhưng, ta thấy \(n^2\) và \(m^2\) khi chia cho 4 chỉ có thể có số dư là 0 hoặc 1, vậy nên \(n^2-m^2\) khi chia cho 4 sẽ chỉ có số dư là \(0,1,-1\), nghĩa là nếu \(n^2-m^2\) mà chia hết cho 2 thì buộc hiệu này phải chia hết cho 4, mâu thuẫn. Vậy điều giả sử là sai \(\Rightarrow\) đpcm.

 

Nếu a+b+c = 0 hoặc a =b=c thì a^3 + b^3 + c^3 = 3abc 

Sử dụng tính chất trên ta được : 

( x - y )^3 + ( y -z )^3 + ( z - x )^3 = 3( x -y )(y -z )( z -x ) 

Nếu x ,y, z có cùng số dư khi chia cho 3 => 

x-y , y- z , z - x :/ 3 ( :/ là kí hiệu chia hết ) 

=> ( x -y )(y -z )( z -x ) :/ 27 => 3( x -y )(y -z )( z -x ) :/ 27

,G/S trong ba số x,y,z ko có số nào có cùng số dư khi chia hết cho 3 

=> ( x -y )(y -z )( z -x ) ko chia hết cho 3 

Từ G/S => x,y,z chia 3 sẽ có 3 số dư là 0,1,2 

=> x+y +z :/3 => ( x -y )(y -z )( z -x ) :/3 ( Vô lý ) 

Vậy trong ba số x,y,z có hai số có cùng số dư khi chia cho 3 . G/S đó là x,y 

=> ( x -y )(y -z )( z -x ) :/3 => x +y +z :/3 

1,Nếu x,y :/ 3 => z :/3 => ( x -y )(y -z )( z -x ) :/27 => 3( x -y )(y -z )( z -x ) :/ 27 

2,Nếu x,y chia 3 dư 1 , x+y+z :/3 => z chia 3 dư 1 => 3( x -y )(y -z )( z -x ) :/ 27 

3,Nếu x,y chia 3 dư 2 , x+y + z :/3 => z chia 3 dư 2 => 3( x -y )(y -z )( z -x ) :/ 27

Tóm lại 3( x -y )(y -z )( z -x ) :/ 27 hay M=(x-y)^3+(y-z)^3+(z-x)^3 :/ 27

tích nha

2 tháng 4 2016

cau kia tra loi dung roi cau a