32+46 < x < 22+40
tìm x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2.
a, x-13=-46
=>x=(-46)+13
=>x=33
b, 4x-6=22
=>4x=22+6
=>4x=28
=>x=28:4
=>x=7
3.
a, 32=25
48=24.3
=>ƯCLN(32,48)=24=16
16=24
72=23.32
=>ƯCLN(16,72)=23=8
b,
24=23.3
60=22.3.5
=>BCNN(24,60)=23.3.5=120
72=23.32
180=22.32.5
=>BCNN(72,180)=23.32.5=360
a, 36:(x–5) = 2 2
(x–5) = 9
x = 14
b, [3.(70–x)+5]:2 = 46
[3.(70–x)+5] = 92
70–x = 29
x = 41
c, 450:[41–(2x–5)] = 3 2 .5
41–(2x–5) = 10
2x–5 = 31
2x = 36
x = 18
d, 230+[ 2 4 +(x–5)] = 315. 2018 0
16+(x–5) = 315–230
x–5 = 85–16
x = 69+5
x = 74
e, 2 x + 2 x + 1 = 48
2 x .(2+1) = 48
2 x = 16 = 2 4
x = 4
f, 3 x + 2 + 3 x = 2430
3 x . 3 2 + 1 = 2430
3 x = 2430:10 = 243 = 3 5
x = 5
1,53 x 72 + 15,3 x 5,2 + 1,53 x 22 - 1,53 x 46
= 110,16 + 79,56 + 33,66 - 70,38
= 153
hok tốt !
1 , 53 x 72 + 15 , 3 x 5 , 2 + 1 , 53 x 22 - 1 , 53 x 46
= 1 , 53 x 72 + 1 , 53 x 10 x 5 , 2 + 1 , 53 x 22 - 1 , 53 x 46
= 1 , 53 x 72 + 1 , 53 x 52 + 1 , 53 x 22 - 1 , 53 x 46
= 1 , 53 x ( 72 + 52 + 22 - 46 )
= 1 , 53 x ( 146 - 46 )
= 1 , 53 x 100
= 153
Chúc bạn học tốt !!!
\(\frac{34}{11}\cdot\frac{27}{46}\cdot\frac{23}{17}\cdot\frac{22}{9}\)
\(=\frac{34\cdot27\cdot23\cdot22}{11\cdot46\cdot17\cdot9}\)
\(=\frac{2\cdot17\cdot3\cdot3\cdot3\cdot23\cdot2\cdot11}{11\cdot2\cdot23\cdot17\cdot3\cdot3}\)
\(=\frac{3\cdot2}{1}\)
\(=6\)
=))
\(A=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{99}}\)
\(\Rightarrow\dfrac{A}{3}=\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\)
\(\Rightarrow A-\dfrac{A}{3}=\dfrac{2A}{3}=\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}\right)-\left(\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\right)\)
\(\Rightarrow\dfrac{2A}{3}=\left(\dfrac{1}{3^2}-\dfrac{1}{3^2}\right)+\left(\dfrac{1}{3^3}-\dfrac{1}{3^3}\right)+...+\left(\dfrac{1}{3^{99}}-\dfrac{1}{3^{99}}\right)+\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)=\dfrac{1}{3}-\dfrac{1}{3^{100}}\)
\(\Rightarrow2A=3\cdot\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)\)
\(\Rightarrow\text{A}=\dfrac{1-\dfrac{1}{3^{99}}}{2}\)
\(\Rightarrow A=\dfrac{1}{2}-\dfrac{1}{2.3^{99}}< \dfrac{1}{2}\)
Có 32+46<x<22+40
=> 78<x<62
=> x thuộc \(\varnothing\)
Cảm ơn bn nhiều nha