Cho tam giác ABC vuông tại A có đường cao AH, D là trung điểm BC.
a) Biết AB=6cm, AC=8cm. Tính độ dài BC,AD,AH.
b) Gọi E là điểm đối xứng với A qua D. Tứ giác ABEC là hình gì? Vì sao?
c) Từ C kẻ đường thẳng vuông góc với BC, cắt BA tại F. Tia phân giác của góc CFA cắt AC tại M. Tính độ dài FM.
Hình bạn tự vẽ
a) Theo định lí Pytago ta có \(BC^2=AB^2+AC^2=100\)
\(\Rightarrow BC=10\left(cm\right)\)
mà BD=DC=> AD=BD=DC\(=\frac{BC}{2}=5\left(cm\right)\)(t/c đường trung tuyến ứng với cạnh huyền)
Theo hệ thức lượng trong tam giác vuông ta có
\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{36}+\frac{1}{64}=\frac{25}{576}\)
\(\Rightarrow AH=\frac{24}{5}\left(cm\right)\)
b, Xét tứ giác ABEC có hai đường chéo AE,BC cắt nhau tại trung điểm mỗi đường
=> tứ giác ABEC là hình bình hành
mà \(\widehat{BAC}=90^0\) => tứ giác ABEC là hình chữ nhật
Mình cần câu c bạn ơi!!! 2 câu kia mình làm đc rùi