tìm số nguyên n để n-1là ước của 7
giúp mình với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
n-1 thuộc Ư(15)
=>n-1=+-1;+-3;+-5;+-15
=>n=2;0;4;-2;6;-4;16;-14
vậy n=2;0;4;-2;6;-4;16;-14
Bạn $๖ۣۜN๖ۣۜE๖ۣۜV ๖ۣۜE ๖ۣۜR $ ^^๖ۣۜG๖ۣۜI ๖ۣۜV๖ۣۜE^^ ๖ۣۜU๖ۣۜP@#$✂ ✃ ✄ 웃✪ ✩ ✰ (TeAm khôn lỏi)✪ ✩ ✰ đã làm câu a nên mình làm câu b nha!
Ta có : 2n-1 chia hết cho n-3
=> 2n-6+5 chia hết cho n-3
=> 2(n-3)+5 chia hết cho n-3
=> 5 chia hết cho n-3
=> n-3 thuộc Ư(5)={-5;-1;1;5}
=> n thuộc {-2;2;4;8}
Vậy n thuộc {-2;2;4;8}
Học tốt!
Answer:
a) \(\left(n+2\right)⋮\left(n-3\right)\)
\(\Rightarrow\left(n-3+5\right)⋮\left(n-3\right)\)
\(\Rightarrow5⋮\left(n-3\right)\)
\(\Rightarrow n-3\) là ước của \(5\), ta có:
Trường hợp 1: \(n-3=-1\Rightarrow n=2\)
Trường hợp 2: \(n-3=1\Rightarrow n=4\)
Trường hợp 3: \(n-3=5\Rightarrow n=8\)
Trường hợp 4: \(n-3=-5\Rightarrow n=-2\)
b) Ta có: \(x-3\inƯ\left(13\right)=\left\{\pm1;\pm13\right\}\)
\(\Rightarrow x\in\left\{4;16;2;-10\right\}\)
Vậy để \(x-3\inƯ\left(13\right)\Rightarrow x\in\left\{4;16;2;-10\right\}\)
c) Ta có: \(x-2\inƯ\left(111\right)\)
\(\Rightarrow x-2\in\left\{\pm111;\pm37;\pm3;\pm1\right\}\)
\(\Rightarrow x\in\left\{-99;-35;1;1;3;5;39;113\right\}\)
d) \(5⋮n+15\Rightarrow n+15\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Trường hợp 1: \(n+15=-1\Rightarrow n=-16\)
Trường hợp 2: \(n+15=1\Rightarrow n=-14\)
Trường hợp 3: \(n+15=5\Rightarrow n=-10\)
Trường hợp 4: \(n+15=-5\Rightarrow n=-20\)
Vậy \(n\in\left\{-14;-16;-10;-20\right\}\)
e) \(3⋮n+24\)
\(\Rightarrow n+24\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Rightarrow n\in\left\{-23;-25;-21;-27\right\}\)
f) Ta có: \(x-2⋮x-2\)
\(\Rightarrow4\left(x-2\right)⋮x-2\)
\(\Rightarrow4x-8⋮x-2\)
\(\Rightarrow\left(4x+3\right)-\left(4x-8\right)⋮x-2\)
\(\Rightarrow11⋮x-2\)
\(\Rightarrow x-2\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
\(\Rightarrow x\in\left\{3;13;1;-9\right\}\)
a, n+2 chia hết cho n-3
Suy ra (n-3)+5 chia hết cho n-3
Suy ra 5 chia hết cho n-3 vì n-3 chia hết cho n-3
suy ra n-3 \(\in\)Ư(5)={-1;-5;1;5}
Ta có bảng giá trị
n-3 | -1 | -5 | 1 | 5 |
n | 2 | -2 | 4 | 8 |
Vậy n={2;-2;4;8}
b, ta có Ư(13)={-1;-13;1;13}
ta có bảng giá trị
x-3 | -1 | -13 | 1 | 13 |
x | 2 | -10 | 4 | 16 |
Vậy n={2;-10;4;16}
c, ta có Ư(111)={-1;-111;;-3;-37;1;111;3;37}
ta có bảng giá trị
x-2 | -1 | -111 | -3 | -37 | 1 | 3 | 111 | 37 |
x | 1 | -99 | -1 | -39 | 3 | 5 | 113 | 39 |
Vậy n={1;-99;-1;-39;3;5;113;39}
Câu 1:
uses crt;
var m,n,ucln,i:integer;
begin
clrscr;
write('Nhap m='); readln(m);
write('Nhap n='); readln(n);
ucln:=1;
if m<n then
begin
for i:=1 to m do
if (m mod i=0) and (n mod i=0) then
begin
if ucln<i then ucln:=i;
end;
end
else begin
for i:=1 to n do
if (m mod i=0) and (n mod i=0) then
begin
if ucln<i then ucln:=i;
end;
end;
writeln(ucln);
readln;
end.
Câu 2:
uses crt;
var m,n,bcnn,i:integer;
begin
clrscr;
write('Nhap m='); readln(m);
write('Nhap n='); readln(n);
bcnn:=m*n;
for i:=m*n-1 downto 1 do
if (i mod m=0) and (i mod n=0) then
begin
if bcnn>i then bcnn:=i;
end;
writeln(bcnn);
readln;
end.
Vì n-2 là Ư(3n-13) nên 3n-13 \(⋮\)n-2
=> n-2 \(⋮\)n-2
=> ( 3n-13) - (n-2) \(⋮\)n-2
=> (3n-13) - 3(n-2) \(⋮\)n-2
=> 3n-13 - 3n + 6 \(⋮\)n-2
=>7 \(⋮\)n-2
=> n-2 \(\in\)Ư(7)= {1;7; -1; -7}
=> n \(\in\){ 3; 9; 1; -5}
Vậy...
Ta có n - 2 là ước của 3n - 13
\(\Leftrightarrow3n-13⋮n-2\)
\(\Leftrightarrow3.\left(n-2\right)-7⋮n-2\)
\(\Leftrightarrow7⋮n-2\)
\(\Leftrightarrow n-2\in\left\{-7;-1;7;1\right\}\)
\(\Leftrightarrow\) \(n\in\left\{-5;1;9;3\right\}\)
Vậy \(n\in\left\{-5;1;9;3\right\}\)
Học tốt
=> \(\left(n-2\right)\in\left\{-3;-1;3;1\right\}\)
=> \(n\in\left\{-1;1;5;3\right\}\)
Có n nguyên => n-1 nguyên
7 chia hết cho n-1
=> n-1 thuộc Ư (7)={-7;-1;1;7}
Ta có bảng
=> n-1 \(\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
=> n\(\in\left\{-6;0;2;8\right\}\)
Vậy với n ....
#Học-tốt