Cho phương trình ( ẩn x ) : 4x2 - 25 + k2 + 4kx . Tính giá trị của k để phương trình nhận x= -2 làm nghiệm.
GIÚP MÌNH GIẢI VỚI. MÌNH CẢM ƠN!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình nhận x = -2 làm nghiệm nên ta có:
4 - 2 2 – 25 + k 2 + 4k(-2) = 0
⇔ 16 – 25 + k 2 – 8k = 0
⇔ k 2 – 8k – 9 = 0
⇔ k 2 – 9k + k – 9 = 0
⇔ k(k – 9) + (k – 9) = 0
⇔ (k + 1)(k – 9) = 0
⇔ k + 1 = 0 hoặc k – 9 = 0
k + 1 = 0 ⇔ k = -1
k – 9 = 0 ⇔ k = 9
Vậy k = -1 hoặc k = 9 thì phương trình nhận x = -2 làm nghiệm.
Khi k = 0 ta có phương trình: 4 x 2 - 25 = 0
⇔ (2x + 5)(2x – 5) = 0
⇔ 2x + 5 = 0 hoặc 2x – 5 = 0
2x + 5 = 0 ⇔ x = - 5/2
2x – 5 = 0 ⇔ x = 5/2
Vậy phương trình có nghiệm x = - 5/2 hoặc x = 5/2
Khi k = - 3 ta có phương trình: 4 x 2 – 25 + - 3 2 + 4(-3)x = 0
⇔ 4 x 2 – 25 + 9 – 12x = 0
⇔ 4 x 2 – 12x – 16 = 0
⇔ x 2 – 3x – 4 = 0
⇔ x 2 – 4x + x – 4 = 0
⇔ x(x – 4) + (x – 4) = 0
⇔ (x + 1)(x – 4) = 0
⇔ x + 1 = 0 hoặc x – 4 = 0
x + 1 = 0 ⇔ x = -1
x – 4 = 0 ⇔ x = 4
Vậy phương trình có nghiệm x = -1 hoặc x = 4.
a,Với k =0 thì biểu thức bằng:
4x3-25=0 hay 4x3 = 25 nên x=\(\sqrt[3]{\frac{25}{4}}\)
b,Với k =(-3) thì biểu thức bằng:\(4x^3-25+9-12x=0\)
hay :\(4x^3-12x=16\)
\(4x\left(x^2-3\right)=16\)
\(x^2-3=\frac{4}{x}\) nên suy ra \(\left(x^2-3\right):\frac{4}{x}=1\)
hay \(x^3-3x=4\)
nên nếu với x là một số tự nhiên thì phương trình vô nghiệm
1
a (9+x)=2 ta có (9+x)= 9+x khi 9+x >_0 hoặc >_ -9
(9+x)= -9-x khi 9+x <0 hoặc x <-9
1)pt 9+x=2 với x >_ -9
<=> x = 2-9
<=> x=-7 thỏa mãn điều kiện (TMDK)
2) pt -9-x=2 với x<-9
<=> -x=2+9
<=> -x=11
x= -11 TMDK
vậy pt có tập nghiệm S={-7;-9}
các cau con lai tu lam riêng nhung cau nhan với số âm thi phan điều kiện đổi chiều nha vd
nhu cau o trên mk lam 9+x>_0 hoặc x>_0
với số âm thi -2x>_0 hoặc x <_ 0 nha
Bài 2: a,b thế số vào rồi giải
c) x = -2 là nghiệm của pt
=> 4.(-2)^2 - 25 + k^2 + 4k.(-2) = 0
Từ đó giải ra tìm k và kết luận.
Thay x =-2 vào phương trình :
\(4.\left(-2\right)^2-25+k^2+4k.\left(-2\right)=0\)
\(\Leftrightarrow16-25+k^2-8k=0\)
\(\Leftrightarrow k^2-8k-9=0\)
\(\Leftrightarrow\left(k-9\right)\left(k+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}k-9=0\\k+1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}k=9\\k=-1\end{cases}}\)
Vậy để phương trình nhận x =-2 làm nghiệm \(\Leftrightarrow k\in\left\{9;-1\right\}\)
\(\)