tim x,y
\(\left(\frac{1}{2}x-3\right)^{10}+\left(y^2-\frac{1}{4}\right)^{20}=0\)
lam chi tiet cho minh roi minh tick cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b,\(\Rightarrow\)\(\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}\right):2=\frac{2013}{2015}:2\)
\(\Rightarrow\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{2013}{4030}\)
\(\Rightarrow\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x.\left(x+1\right)}=\frac{2013}{4030}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2013}{4030}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2013}{4030}\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{2015}\)
\(\Rightarrow\)\(x+1=2015\)
\(\Rightarrow x=2014\)
a, 2/3x -3/2.x-1/2x=5/12
x.(2/3-3/2-1/2)=5/12
x. -4/3=5/12
x=5/12:-4/3
x=-5/16
b,2/6+2/12+2/20+...+2/x.(x+1)=2013/2015
2/2.3+2/3.4+2/4.5+...+2/x.(x+1)=2013/2015
1/2(1-1/3+1/3-1/4+1/4-1/5+...+1/x-1/x+1)=2013/2015
1/2(1-1/x+1)=2013/2015
1-1/x+1=2013/2015 : 1/2
1-1/x+1=4206/2015
suy ra đề sai
a) \(x^3-\frac{4}{25}x=0\)
\(\Leftrightarrow x\left(x+\frac{2}{5}\right)\left(x-\frac{2}{5}\right)=0\)
<=> x = 0
Xét 2 trường hợp:
\(\Leftrightarrow x+\frac{2}{5}=0\)
\(x=0-\frac{2}{5}\)
\(x=-\frac{2}{5}\)
\(\Leftrightarrow x-\frac{2}{5}=0\)
\(x=0+\frac{2}{5}\)
\(x=\frac{2}{5}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=\pm\frac{2}{5}\end{cases}}\)
b) \(\left(\frac{3}{8}+\frac{-3}{4}+\frac{7}{12}\right):\frac{5}{6}+\frac{1}{2}\)
\(=\left(\frac{3}{8}+\frac{-3}{4}+\frac{7}{12}\right):\frac{4}{3}\)
\(=\frac{13}{40}:\frac{4}{3}\)
\(=\frac{39}{120}=\frac{13}{40}\)
c) \(4\left(\frac{-1}{2}\right)^3-2\left(\frac{-1}{2}\right)^2+3\left(\frac{-1}{2}\right)-1\left(\frac{-1}{2}\right)^0\)
\(=4\left(\frac{-1}{2}\right)^3-2\left(\frac{-1}{2}\right)^3+3\left(\frac{-1}{2}\right)-1.1\)
\(=-\frac{1}{2}-\frac{1}{2}-\frac{3}{2}-1.1\)
\(=-\frac{5}{2}-1\)
\(=-\frac{7}{2}\)
\(x^3+3x^2+3x+1+y^3+3y^3+3y+1+x+y+2=0\)
\(\Leftrightarrow\left(x+1\right)^3+\left(y+1\right)^3+x+y+2=0\)
\(\Leftrightarrow\left(x+y+2\right)\left(\left(x+1\right)^2+\left(y+1\right)^2-\left(x+1\right)\left(y+1\right)\right)+\left(x+y+2\right)=0\)
\(\Leftrightarrow\left(x+y+2\right)\left(\left(x+1\right)^2+\left(y+1\right)^2-\left(x+1\right)\left(y+1\right)+1\right)=0\)
\(\Leftrightarrow x+y+2=0\)
(phần trong ngoặc \(\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\frac{\left(y+1\right)^2}{4}+\frac{3\left(y+1\right)^2}{4}+1\)
\(=\left(x+1-\frac{y+1}{4}\right)^2+\frac{3\left(y+1\right)^2}{4}+1\) luôn dương)
\(\Rightarrow x+y=-2\)
Mà \(xy>0\Rightarrow\left\{{}\begin{matrix}x< 0\\y< 0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}-x>0\\-y>0\end{matrix}\right.\)
Ta có: \(\frac{1}{-x}+\frac{1}{-y}\ge\frac{4}{-\left(x+y\right)}=2\) \(\Leftrightarrow\frac{1}{x}+\frac{1}{y}\le-2\) (đpcm)
Dấu "=" xảy ra khi và chỉ khi \(x=y=-1\)
2/ \(x;y;z\ne0\)
\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)
\(\Leftrightarrow\frac{x+y}{xy}+\frac{1}{z}-\frac{1}{x+y+z}=0\)
\(\Leftrightarrow\frac{x+y}{xy}+\frac{x+y}{xz+yz+z^2}=0\)
\(\Leftrightarrow\left(x+y\right)\left(\frac{1}{xy}+\frac{1}{xz+yz+z^2}\right)=0\)
\(\Leftrightarrow\left(x+y\right)\left(\frac{xy+yz+xz+z^2}{xyz\left(x+y+z\right)}\right)=0\)
\(\Leftrightarrow\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz\left(x+y+z\right)}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-y\\y=-z\\z=-x\end{matrix}\right.\) dù trường hợp nào thì thay vào ta đều có \(B=0\)
3/ \(\Leftrightarrow mx-2x+my-y-1=0\)
\(\Leftrightarrow m\left(x+y\right)-\left(2x+y+1\right)=0\)
Gọi \(A\left(x_0;y_0\right)\) là điểm cố định mà d đi qua
\(\Leftrightarrow\left\{{}\begin{matrix}x_0+y_0=0\\2x_0+y_0+1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_0=-1\\y_0=1\end{matrix}\right.\)
Vậy d luôn đi qua \(A\left(-1;1\right)\) với mọi m
A=\(\left(1+x\right)\left(1+\frac{1}{y}\right)+\left(1+\frac{1}{x}\right)\left(1+y\right)=x+\frac{x}{y}+\frac{1}{y}+1+y+\frac{y}{x}+\frac{1}{x}+1\)
=\(\left(x+y+\frac{1}{x}+\frac{1}{y}\right)+\frac{x}{y}+\frac{y}{x}+2\)
mà x2+y2=1
=>2(x2+y2)>(=)(x+y)2
\(\Rightarrow x+y\le\sqrt{2}\)
áp dụng bất đẳng thức cô si ta có:
\(\left(x+y+\frac{1}{x}+\frac{1}{y}\right)+\frac{x}{y}+\frac{y}{x}+2\ge\left(x+y+\frac{4}{x+y}\right)+4\)
\(=\left[\left(x+y\right)+\frac{2}{x+y}+\frac{2}{x+y}\right]+4\ge2\sqrt{2}+\sqrt{2}+4=4+3\sqrt{2}\)
\(\Rightarrow\int^{\frac{1}{2}x-3=0}_{y^2-\frac{1}{4}=0}\Leftrightarrow\int^{x=6}_{\left(y-\frac{1}{2}\right)\left(y+\frac{1}{2}\right)=0}\Rightarrow\int^{x=6}_{\int^{y=\frac{1}{2}}_{y=-\frac{1}{2}}}\)