Cho tam giác ABC biết AH vuông góc với BC biết AB = 5 cm BH = 3 cm BC = 8 cm Tính độ dài các cạnh AH HC và AC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho tam giác ABC, kẻ AH ⊥ BC. Biết AB = 5 cm, BH = 3 cm, BC = 8 cm. Tính độ dài các cạnh AH, HC, AC?
Xét \(\Delta ABH\)vuông tại H ta có :
\(AB^2+BH^2=AH^2\)(định lí Pitago)
=> \(AH^2=AB^2-BH^2\)
=> \(AH^2=5^2-3^2\)
=> \(AH^2=25-9=16\)
=> \(AH=4\left(cm\right)\)
Ta có : \(BH+HC=BC\)
=> \(3+HC=8\)
=> \(HC=5\left(cm\right)\)
Xét \(\Delta AHC\)vuông tại H ta có :
\(AH^2+HC^2=AC^2\)
=> \(4^2+5^2=AC^2\)
=> \(16+25=AC^2\)
=> \(AC^2=41\)
=> \(AC=\sqrt{41}\)(vì AC > 0)
TA CÓ TAM GIÁC ABH VUÔNG TẠI H ;A/D ĐỊNH LÝ PYTAGO TA CÓ
\(AB^2=AH^2+BH^2=>BH^2=AB^2-AH^2\)
=>\(BH^2=15^2-12^2=>BH^2=81=>BH=9'\left(cm\right)\)
=>\(BC=9+16=25\left(cm\right)\)
ta có \(\Delta AHC\) VUÔNG TẠI H A/D ĐỊNHLÝ PYTAGO TA CÓ
\(AC^2=AH^2+HC^2=>AC^2=12^2+16^2\)
=>\(AC^2=400=>AC=20\left(cm\right)\)
a/
∆ABC vuông tại A, AH, vuông góc BC
=> AB.AH = HB.AC
=> AB = 15Ta có: BC^2 = AB^2 + AC^2=> BC = 25=> HB = BC - BH = 25-9 = 16
a) Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:
\(AH^2+BH^2=AB^2\)
\(\Leftrightarrow AB^2=9^2+12^2=225\)
hay AB=15(cm)
Vậy: AB=15cm
Áp dụng định lý Pi-ta-go vào tam giác vuông ABH vuông tại H ta có:
AB2= BH2 + AH2
<=> 152= 122+ AH2
<=> AH2= 152- 122= 225- 144= 81
<=> AH= 9 (cm)
Tương tự ta có : Áp dụng định lý Pi-ta-go vào tam giác vuông ACH vuông tại H .
AC2= AH2+ HC2
<=> 412= 92+ HC2
<=> HC2= 412- 92= 1681- 81= 1600
<=>HC= 40 (cm)
Vì H ∈∈ BC nên ta có :
BC = BH + HC => 8 = 3 + HC
=> HC = 8 - 3 => HC = 5 cm
Áp dụng định lý pytago vào :
+) ΔABH ta có: AB^2 = BH^2 + AH^2 => AH^2 = AB^2 - BH^2
=> AH^2 = 562 - 3^2 => AH^2 = 25 - 9
=> AH^2 = 16 => AH = 4cm (do AH > 0cm )
+) ΔAHC có : AC^2 = AH^2 + HC^ 2 => AC ^2 = 4^2 + 5^2
=> AC^2 = 16 + 25 => AC^2 = 41
=> AC = \(\sqrt{41}cm\left(do\right)AC>0cm\)
Vậy AH = 4 cm ; HC = 5 cm ; AC = \(\sqrt{41}\)
Học tốt
HÌNH VẼ NÈK