K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

a) Từ đồ thị ta thấy đồ thị hàm số đi lên trong khoảng \(\left( { - 1; + \infty } \right)\) nên hàm số đồng biến trong khoảng \(\left( { - 1; + \infty } \right)\). Trong khoảng \(\left( { - \infty ; - 1} \right)\)  thì hàm số nghich biến.

Bảng biến thiên:

b) Từ đồ thị ta thấy đồ thị hàm số đi lên trong khoảng \(\left( { - \infty ;1} \right)\) nên hàm số đồng biến trong khoảng \(\left( { - \infty ;1} \right)\). Trong khoảng \(\left( {1; + \infty } \right)\)  thì hàm số nghịch biến.

Bảng biến thiên:

a: Tọa độ đỉnh là:

\(\left\{{}\begin{matrix}x=\dfrac{-6}{2\cdot4}=\dfrac{-6}{8}=\dfrac{-3}{4}\\y=-\dfrac{6^2-4\cdot4\cdot\left(-5\right)}{4\cdot4}=-\dfrac{29}{4}\end{matrix}\right.\)

Bảng biến thiên là:

x-\(\infty\)                 -3/4                             +\(\infty\)
y-\(\infty\)                 -29/4                           +\(\infty\)

 loading...

b: Hàm số đồng biến khi x>-3/4; nghịch biến khi x<-3/4

GTNN của hàm số là y=-29/4 khi x=-3/4

a: Tọa độ đỉnh là:

\(\left\{{}\begin{matrix}x=\dfrac{-10}{2\cdot\left(-3\right)}=\dfrac{10}{6}=\dfrac{5}{3}\\y=-\dfrac{10^2-4\cdot\left(-3\right)\cdot\left(-4\right)}{4\cdot\left(-3\right)}=\dfrac{13}{3}\end{matrix}\right.\)

Bảng biến thiên:

x-\(\infty\)                    5/3                          +\(\infty\)
y+\(\infty\)                    13/3                       -\(\infty\)

loading...

b: Hàm số đồng biến khi x<5/3; nghịch biến khi x>5/3

Giá trị nhỏ nhất là y=13/3 khi x=5/3

 

a: loading...

Tọa độ đỉnh là:

\(\left\{{}\begin{matrix}x=\dfrac{-6}{2\cdot\left(-1\right)}=\dfrac{6}{2}=3\\y=-\dfrac{6^2-4\cdot\left(-1\right)\cdot\left(-9\right)}{4\cdot\left(-1\right)}=0\end{matrix}\right.\)

=>Hàm số đồng biến khi x<3 và nghịch biến khi x>3

b: loading...

Tọa độ đỉnh là I(-2;-4)

=>Hàm số đồng biến khi x>-2 và nghịch biến khi x<-2

4 tháng 1 2018

Bảng biến thiên

Giải sách bài tập Toán 10 | Giải sbt Toán 10

Hàm số đồng biến trên khoảng ( - ∞ ;   0 ) nghịch biến trên khoảng ( 0 ;   + ∞ ) , hàm số là chẵn.

    Đỉnh parabol I(0;-2); đồ thị đi qua điểm (1;-4) và điểm (-1;-4).

    Đồ thị hàm số y   =   - 2 ( x 2   +   1 ) được vẽ trên hình 38.

Giải sách bài tập Toán 10 | Giải sbt Toán 10

 

25 tháng 1 2019

Hàm số bậc hai đã cho có a = 2; b = 4; c = -6;

Giải sách bài tập Toán 10 | Giải sbt Toán 10

Vì a > 0, ta có bảng biến thiên

Giải sách bài tập Toán 10 | Giải sbt Toán 10

Hàm số nghịch biến trên khoảng (-∞; -1) đồng biến trên khoảng (-1; +∞)

    Để vẽ đồ thị ta có trục đối xứng là đường thẳng x = -1; đỉnh I(-1;-8); giao với tục tung tại điểm (0;-6); giao với trục hoành tại các điểm (-3;0) và (1;0).

    Đồ thị của hàm số y   =   2 x 2   +   4 x   -   6 được vẽ trên hình 35.

Giải sách bài tập Toán 10 | Giải sbt Toán 10

19 tháng 4 2019

Bảng biến thiên

Giải sách bài tập Toán 10 | Giải sbt Toán 10

 Hàm số nghịch biến trên khoảng ( - ∞ ;   - 1 ) đồng biến trên khoảng ( - 1 ;   + ∞ )

    Đỉnh parabol ( - 1 ;   2   - 3 )

    Đồ thị hàm số được vẽ trên hình 37.

Giải sách bài tập Toán 10 | Giải sbt Toán 10

17 tháng 9 2018

Bảng biến thiên

Giải sách bài tập Toán 10 | Giải sbt Toán 10

Hàm số đồng biến trên khoảng (-∞; -1) nghịch biến trên khoảng (-1; +∞)

Đỉnh parabol I(-1;7). Đồ thị của hàm số y   =   - 3 x 2   -   6 x   +   4  được vẽ trên hình 36.

Giải sách bài tập Toán 10 | Giải sbt Toán 10