Bài 3 (3,5 điểm)
Cho tam giác ABC có trung tuyến BM và trung tuyến CN cắt nhau tại G. Trên tia GM lấy điểm P sao cho M là trung điểm của GP
1) Chứng minh tam giác AMP bằng tam giác CMG
2) Gọi Q là trung điểm của CG, chứng minh BQ=NP
3) Gọi E là giao điểm của AG với BQ, CE cắt BG tại F, chứng minh GF=GM.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ta có: GN và GQ là hai tia đối nhau
=>G nằm giữa N và Q
mà GN=GQ
nên G là trung điểm của NQ
Ta có: GP và GM là hai tia đối nhau
=>G nằm giữa P và M
mà GP=GM
nên G là trung điểm của PM
Xét tứ giác MNPQ có
G là trung điểm chung của MP và NQ
=>MNPQ là hình bình hành
b: Ta có: ΔABC cân tại A
=>AB=AC(1)
Ta có: M là trung điểm của AC
=>\(AM=CM=\dfrac{AC}{2}\left(2\right)\)
Ta có: N là trung điểm của AB
=>\(AN=BN=\dfrac{AB}{2}\left(3\right)\)
Từ (1),(2),(3) suy ra AM=CM=AN=BN
Xét ΔAMB và ΔANC có
AM=AN
\(\widehat{BAM}\) chung
AB=AC
Do đó: ΔAMB=ΔANC
=>BM=CN
Xét ΔABC có
BM,CN là các đường trung tuyến
BM cắt CN tại G
Do đó: G là trọng tâm của ΔABC
=>\(MG=\dfrac{1}{3}BM;NG=\dfrac{1}{3}CN\)
mà BM=CN
nên MG=NG
G là trung điểm của QN
nên QN=2NG
G là trung điểm của MP
nên MP=2MQ
Ta có: MG=NG
mà QN=2NG và MP=2MQ
nên QN=MP
Hình bình hành MNPQ có NQ=MP
nên MNPQ là hình chữ nhật
1:
Xét ΔBAC có
BM,CN là trung tuyến
BM cắt CN tại G
=>G là trọng tâm
=>BG=2/3BM và CG=2/3CN
BG+CG>BC
=>2/3BM+2/3CN>BC
=>2/3(BM+CN)>BC
=>BM+CN>3/2BC
2:
BF=2BE
=>EF=BE
=>EF=2ED
=>D là trung điểm của EF
Xét ΔFEC có
CD,EK là trung tuyến
CD cắt EK tại G
=>G là trọng tâm
b: G là trọng tâm của ΔFEC
=>GE/GK=1/2 và GC/DC=2
1: Xét ΔAMP và ΔCMG có
MA=MC
góc AMP=góc CMG
MP=MG
Do đo: ΔAMP=ΔCMG
2: Xét tứ giác BQPN có
G là trung điểm của BP
G là trung điểm của QN
Do đó: BQPN là hình bình hành
Suy ra: BQ=PN