Bài 1 : Chứng minh các đẳng thức :
1 : [ -a^5 . (- a )^5 ] ^2 + [ -a^2 . (-a)^2 ] ^5 = 0
Tick nha !
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) a³ + b³ + c³ - 3abc
=(a + b)(a² - ab + b²) + c³ - 3abc
=(a + b)(a² - ab + b²) + c(a² - ab + b²) - 2abc - ca² - cb²
=(a + b + c)(a² - ab + b²) - (abc + b²c + bc² + ac² + abc + c²a) + c³ + ac² + bc²
=(a + b = c)(a² - ab + b²) - (a + b + c)(bc + ca) + c²(a + b + c)
=(a + b + c)(a² + b² + c² - ab - bc - ca)
2) \(\left(3a+2b-1\right)\left(a+5\right)-2b\left(a-2\right)=\left(3a+5\right)\left(a-3\right)+2\left(7b-10\right)\left(1\right)\)
\(\Leftrightarrow3a^2+15a+2ab+10b-a-5-2ab+4b=3a^2+14a+15+14b-10\)
\(\Leftrightarrow3a^2+14a+14b-5=3a^2+14a+14b-5\)( đúng)
\(\Rightarrow\left(1\right)\) đúng (đpcm)
1) a3+b3+c3-3abc = (a+b)3-3ab(a+b)+c3-3abc
= (a+b+c)(a2+2ab+b2-ab-ac+c2) -3ab(a+b+c)
= (a+b+c)( a2+b2+c2-ab-bc-ca)
Bài 1 :
a, \(A=x^2-4x+6=x^2-4x+4+2=\left(x-2\right)^2+2\ge2\)
Dấu ''='' xảy ra khi x = 2
Vậy GTNN A là 2 khi x = 2
b, \(B=y^2-y+1=y^2-2.\frac{1}{2}y+\frac{1}{4}+\frac{3}{4}=\left(y-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Dấu ''='' xảy ra khi y = 1/2
Vậy GTNN B là 3/4 khi y = 1/2
c, \(C=x^2-4x+y^2-y+5=x^2-4x+4+y^2-y+\frac{1}{4}+\frac{3}{4}\)
\(=\left(x-2\right)^2+\left(y-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Dấu ''='' xảy ra khi \(x=2;y=\frac{1}{2}\)
Vậy GTNN C là 3/4 khi x = 2 ; y = 1/2
Bài 3 :
a, \(x^2-6x+10=x^2-2.3.x+9+1=\left(x-3\right)^2+1\ge1>0\)( đpcm )
b, \(-y^2+4y-5=-\left(y^2-4y+5\right)=-\left(y^2-4y+4+1\right)=-\left(y-2\right)^2-1< 0\)( đpcm )
Bài 4 :
\(B=\left(x^2+y^2\right)=\left(x+y\right)^2-2xy\)
Thay (*) ta được : \(225-2\left(-100\right)=225+200=425\)
Bài 5 :
\(\left(x+y\right)^2-\left(x-y\right)^2=\left(x+y-x+y\right)\left(x+y+x-y\right)\)
\(=2y.2x=4xy=VP\)( đpcm )
Bài 1 :
\((x-2y)(y-1)=5\)
\(\Rightarrow y-1\inƯ(5)=\left\{\pm1;\pm5\right\}\)
Lập bảng :
y - 1 | 1 | -1 | 5 | -5 |
x - 2y | -5 | 5 | -1 | 1 |
y | 2 | 0 | 6 | -4 |
x | -5 | 9 | -9 | 13 |
Vậy \((x,y)\in\left\{(2,-5);(0,9);(6,-9);(-4,13)\right\}\)
Bài 1:Giải
Từ \(\left(x-2y\right)\left(y-1\right)=5\)
\(\Rightarrow\)\(x-2y\)và \(y-1\)là các ước của 5
Mà \(Ư\left(5\right)=\left\{-1;1;-5;5\right\}\)
Ta có bảng sau:
y-1 | 1 | -1 | 5 | -5 |
y | 2(thỏa mãn) | 0(thỏa mãn) | 6(thỏa mãn) | -4(thỏa mãn) |
x - 2y | 5 | -5 | 1 | -1 |
x | 9(thỏa mãn) | -5(thỏa mãn) | 13(thỏa mãn) | -9(thỏa mãn) |
Vậy các cặp ( x;y ) cần tìm là:( 9;2 ),( -5;0 ),( 13;6 ),( -9;-4 )
\(1:\left[\left(-a\right)^5.\left(-a\right)^5\right]^2+\left[\left(-a\right)^2.\left(-a\right)^2\right]^5=0\)
\(\Rightarrow\left[\left(-a\right)^{10}\right]^2+\left[\left(-a\right)^4\right]^5=1:0\)
=>Đề sai bạn xem lại nha
Chúc bn học tốt