K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(X^2-X+Y^2+Y+\frac{1}{2}=0\)

<=> \(\left(X^2-2X\frac{1}{2}+\frac{1}{4}\right)+\left(Y^2+2Y\frac{1}{2}+\frac{1}{4}\right)=0\)

<=>\(\left(X-\frac{1}{2}\right)^2+\left(Y+\frac{1}{2}\right)^2=0\)

Vì \(\left(X-\frac{1}{2}\right)^2\ge0\forall X\) ,   ,\(\left(Y+\frac{1}{2}\right)^2\ge0\forall Y\)

=> \(VT\ge0\forall X;Y\)

mà VT = 0

Từ 2 điều trên => \(\hept{\begin{cases}\left(X-\frac{1}{2}\right)^2=0\\\left(Y+\frac{1}{2}\right)^2=0\end{cases}}\)

<=>\(\hept{\begin{cases}X-\frac{1}{2}=0\\Y+\frac{1}{2}=0\end{cases}}\)

<=>\(\hept{\begin{cases}X=\frac{1}{2}\\Y=-\frac{1}{2}\end{cases}}\)

kết luận:

Ta có: \(\left(x-1\right)^{2020}\ge0\forall x\)

\(\left|y-3\right|\ge0\forall y\)

Do đó: \(\left(x-1\right)^{2020}+\left|y-3\right|\ge0\forall x,y\)

Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-1=0\\y-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\end{matrix}\right.\)

Vậy: (x,y)=(1;3)

27 tháng 6 2018

1)  1/x-1/y

=y/xy-x/xy

=y-x/xy

= - (x-y)/xy

= -1 (vì x-y=xy)

2)

(x- 1/2)*(y+1/3)*(z-2)=0

=> x-1/2 = 0 hoac y+1/3=0 hoac z-2=0

th1 :x-1/2=0 => x=1/2

x+2=y+3=z+4

mà x=1/2 => y= -1/2 ; z=-3/2

th2: y+1/3=0

th3 : z-2=0

(tự làm nha)

27 tháng 6 2018

1)  Với x,y khác 0, Ta có

\(\frac{1}{x}-\frac{1}{y}=\frac{y-x}{xy}=-\left(\frac{x-y}{xy}\right)=-\left(\frac{xy}{xy}\right)=-1\)

Vậy \(\frac{1}{x}-\frac{1}{y}=-1\)

2) Ta có:

\(\left(x-\frac{1}{2}\right)\left(y+\frac{1}{3}\right)\left(z-2\right)=0\)

Trường hợp 1: x - 1/2 = 0 => x = 1/2 \(\Rightarrow\hept{\begin{cases}y=\frac{1}{2}+2-3=-\frac{1}{2}\\z=\frac{1}{2}+2-4=-\frac{3}{2}\end{cases}}\)

Trường hợp 2: y + 1/3 = 0 => y = -1/3 \(\Rightarrow\hept{\begin{cases}x=-\frac{1}{3}+3-2=\frac{2}{3}\\z=-\frac{1}{3}+3-4=-\frac{4}{3}\end{cases}}\)

Trường hợp 3: z - 2 = 0 => z = 2 \(\Rightarrow\hept{\begin{cases}x=2+4-2=4\\y=2+4-3=3\end{cases}}\)

Vậy......

26 tháng 10 2019

Ta có: \(\hept{\begin{cases}\left(x+\frac{1}{2}\right)^{100}\ge0;\forall x,y\\|7-\frac{1}{3}y|\ge0;\forall x,y\end{cases}}\)\(\Rightarrow\left(x+\frac{1}{2}\right)^{100}+|7-3y|\ge0;\forall x,y\)

Do đó \(\left(x+\frac{1}{2}\right)^{100}+|7-3y|=0\)

\(\Leftrightarrow\hept{\begin{cases}\left(x+\frac{1}{2}\right)^{100}=0\\|7-\frac{1}{3}y|=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x+\frac{1}{2}=0\\7-\frac{1}{3}y=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{-1}{2}\\y=\frac{7}{3}\end{cases}}\)

Vậy ...

26 tháng 10 2019

Nhầm nhé \(y=21\)

a: f(-2)=4+3=7

f(-1)=2+3=5

f(0)=3

f(1/2)=-1+3=2

f(-1/2)=1+3=4

b: g(-1)=1-1=0

f(0)=0-1=-1

NV
10 tháng 1 2021

Đặt \(\left\{{}\begin{matrix}x+\sqrt{1+x^2}=a>0\\y+\sqrt{1+y^2}=b>0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}1+x^2=a^2+x^2-2ax\\1+y^2=b^2+y^2-2by\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{a^2-1}{2a}\\y=\dfrac{b^2-1}{2b}\end{matrix}\right.\)

Giả thiết trở thành: \(ab=2018\)

\(P=\dfrac{a^2-1}{2a}+\dfrac{b^2-1}{2b}=\dfrac{1}{2}\left(a+b\right)-\dfrac{a+b}{2ab}\)

\(P=\dfrac{1}{2}\left(a+b\right)\left(1-\dfrac{1}{ab}\right)=\dfrac{1}{2}\left(a+b\right).\dfrac{2017}{2018}\ge\sqrt{ab}.\dfrac{2017}{2018}=\dfrac{2017}{\sqrt{2018}}\)

\(P_{min}=\dfrac{2017}{\sqrt{2018}}\)

Dấu "=" xảy ra khi \(x=y=\dfrac{2017}{2\sqrt{2018}}\)

2 tháng 3 2015

a.x3(x+y) - y3(x+y)-1 = -1

 

17 tháng 7 2017

ngu vậy cái này mà cũng hỏi à