Cho tam giác ABC vuông cân tại A. Gọi D là một điểm bất kỳ trên cạnh BC ( D khác B và C). Vẽ hai tia Bx; Cy vuông góc với BC và nằm trên cùng một nửa mặt phẳng có bờ chứa BC và điểm A. Qua A vẽ đường thẳng vuông góc với AD cắt Bx tại M và cắt Cy tại N. Chứng minh:
a. DAMB = DADC.
b. A là trung điểm của MN.
a) Có \(\Delta\)ABC vuông cân tại A (gt)
\(\Rightarrow\widehat{ABC}=\widehat{ACB}=45^o\)
Mà Bx _|_ BC (gt) => \(\widehat{ABM}=45^o\)
Xét tam giác ADC và tam giác ABM có:
\(\widehat{ABM}=\widehat{ACD}=45^o\)
AB=AC (gt)
\(\widehat{MAB}=\widehat{DAC}\)(cùng phụ \(\widehat{BAD}\))
\(\Rightarrow\Delta ADC=\Delta ABM\left(gcg\right)\)
=> AM=AD (2 cạnh tương ứng) (đpcm)
Nguồn: ĀØ