K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 5 2018

23 tháng 10 2023

A=1+3+3^2+3^3+...+3^98+3^99+3^100

A=(1+3+ 3^2)+(3^3+3^4+3^5)+...+(3^98+3^99+3^100)

A=(1+3+3^2)+3^3x(1+3+3^2)+...+3^98x(1+3+3^2)

A=13x3^3x13+...+3^98x13

=> 13x(1+3+3^3+...+3^98)chia hết cho 13

Vậy A chia hết cho 13

23 tháng 10 2023

câu b đâu bạn ?

 

17 tháng 12 2021

a: \(A=\left(1+3\right)+...+3^{10}\left(1+3\right)\)

\(=4\left(1+...+3^{10}\right)⋮4\)

24 tháng 7 2023

\(C=1+3+3^2+3^3+...+3^{11}\\ a,C=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+\left(3^6+3^7+3^8\right)+\left(3^9+3^{10}+3^{11}\right)\\ =13+3^3.\left(1+3+3^2\right)+3^6.\left(1+3+3^2\right)+3^9.\left(1+3+3^2\right)\\ =13+3^3.13+3^6.13+3^9.13\\ =13.\left(1+3^3+3^6+3^9\right)⋮13\)

Ý a phải chia hết cho 13 chứ em?

b: C=(1+3+3^2+3^3)+...+3^8(1+3+3^2+3^3)

=40(1+...+3^8) chia hết cho 40

a: C ko chia hết cho 15 nha bạn

7 tháng 7 2017

Sơ đồ con đường

Lời giải chi tiết

 

Ta có:

A = 1 + 3 + 3 2 + ... + 3 11     = 1 + 3 + 3 2 1 + 3 + ... + 3 10 1 + 3     = 4 + 3 2 .4 + ... + 3 10 .4     = 1 + 3 2 + ... + 3 10 .4

Áp dụng tính chất chia hết của một tích:  ⇒ A ⋮ 4

16 tháng 2 2022

b) ab+ba

Ta có:ab=10a+b

          ba=10b+a

 ab+ba=10a+b+10b+a

           =  11a  + 11b

Ta thấy: 11a⋮11   ;   11b⋮11

=>ab+ba⋮11 (ĐPCM)

7 tháng 7 2015

a,

abba=a1000+b100+b10+a1

=a(1000+1)+b(10+100)

=a.1001+b.110

=a.(11.91)+(11.10) chia hết cho 11

 

7 tháng 7 2015

a,abba= 1000a + 100b + 10b+a = 1001a + 110b = 11.(91a+10b)

=> abba chia hết cho 11

b, aaabbb=111 x a x 1000+111 x b=37 x (3 x a x 1000) + 37 x (3 x b)

=> aaabbb chia hết cho 37

----------------------------------------

 

1 tháng 10 2023

a, 10615 + 8 không chia hết cho 2 vì 8 ⋮ 2  nhưng 10615 không chia hết cho 2

10615 + 8 không chia hết cho 9 vì 1 + 6 + 1 + 5 + 8 = 21 không chia hết cho 9

1 tháng 10 2023

c,    B = 102010 -  4                                                                                   

       10 \(\equiv\) 1 (mod 3)

      102010 \(\equiv\) 12010 (mod 3)

      4          \(\equiv\) 1(mod 3)

⇒ 102010 - 4   \(\equiv\) 12010 - 1 (mod 3)

⇒ 102010 - 4   \(\equiv\)  0 (mod 3)

⇒ 102010 - 4 \(⋮\) 3

16 tháng 7 2015

ababab = ab.101010=ab.7.14430 chia hết cho 7 (trong tích có 1 thừa số chia hết cho 7)

=> ababab chia hết cho 7(đpcm)