1/3 - 2/5 +3/35 - 4/63 + 5/99 - 6/143
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(5-\dfrac{2}{3}-\dfrac{14}{15}+\dfrac{1}{35}-\dfrac{62}{63}-\dfrac{98}{99}-\dfrac{142}{143}\)
\(=5-\left(1-\dfrac{1}{3}\right)-\left(1-\dfrac{1}{15}\right)+\dfrac{1}{35}-\left(1-\dfrac{1}{63}\right)-\left(1-\dfrac{1}{99}\right)-\left(1-\dfrac{1}{143}\right)\)
\(=5-1+\dfrac{1}{1\cdot3}-1+\dfrac{1}{3\cdot5}+\dfrac{1}{5\cdot7}-1+\dfrac{1}{7\cdot9}-1+\dfrac{1}{9\cdot11}-1+\dfrac{1}{11\cdot13}\)
\(=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{11}-\dfrac{1}{13}\)
\(=1-\dfrac{1}{13}=\dfrac{12}{13}\)
\(\frac{3x}{5}=\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+\frac{1}{143}\)
Ta có: \(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+\frac{1}{143}\)
\(=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}+\frac{1}{11.13}\)
\(=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{13}\right)\)
\(=\frac{1}{2}.\frac{12}{13}\)
\(=\frac{6}{13}\)
\(\frac{3x}{5}=\frac{6}{13}\)
\(\Rightarrow3x=\frac{6.5}{13}\)
\(\Rightarrow3x=\frac{30}{13}\)
\(\Rightarrow x=\frac{10}{13}\)
~Học tốt~
\(\frac{5}{3}+\frac{5}{15}+\frac{5}{35}+\frac{5}{63}+\frac{5}{99}+\frac{5}{143}\)
\(=\frac{5}{2}\cdot\left(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+...+\frac{2}{11\cdot13}\right)\)
\(=\frac{5}{2}\cdot\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{11}-\frac{1}{13}\right)\)
\(=\frac{5}{2}\cdot\left(1-\frac{1}{13}\right)\)
\(=\frac{5}{2}\cdot\frac{12}{13}\)
\(=\frac{30}{13}\)
\(\frac{5}{3}+\frac{5}{15}+\frac{5}{35}+\frac{5}{63}+\frac{5}{99}+\frac{5}{143}\)
\(=5\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+\frac{1}{143}\right)\)
\(=\frac{5}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}\right)\)
\(=\frac{5}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}\right)\)
\(=\frac{5}{2}\left(1-\frac{1}{13}\right)\)
\(=\frac{5}{2}.\frac{12}{13}\)
\(=\frac{30}{13}\)
a) \(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}\)
=\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}\)
=\(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}\)
=\(1-\dfrac{1}{6}\)=\(\dfrac{5}{6}\)
b) \(\dfrac{1}{15}+\dfrac{1}{35}+\dfrac{1}{63}+\dfrac{1}{99}+\dfrac{1}{143}\)
=\(\dfrac{1}{3.5}+\dfrac{1}{5.7}+\dfrac{1}{7.9}+\dfrac{1}{9.11}+\dfrac{1}{11.13}\)
=\(\dfrac{1.2}{3.5.2}+\dfrac{1.2}{5.7.2}+\dfrac{1.2}{7.9.2}+\dfrac{1.2}{9.11.2}+\dfrac{1.2}{11.13.2}\)
=\(\dfrac{1}{2}\left(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+\dfrac{2}{9.11}+\dfrac{2}{11.13}\right)\).
=\(\dfrac{1}{2}\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{13}\right)\)
=\(\dfrac{1}{2}\left(\dfrac{1}{3}-\dfrac{1}{13}\right)\)=\(\dfrac{1}{2}.\dfrac{10}{39}\)=\(\dfrac{5}{39}\).
c) \(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}\)
=\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}\)
=\(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}\)
=\(1-\dfrac{1}{8}=\dfrac{7}{8}\).
d) \(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+\dfrac{1}{2^5}\)
=\(\dfrac{2^4}{2^5}+\dfrac{2^3}{2^5}+\dfrac{2^2}{2^5}+\dfrac{2}{2^5}+\dfrac{1}{2^5}\)
=\(\dfrac{2^4+2^3+2^2+2+1}{2^5}\)=\(\dfrac{2^5-1}{2^5}=\dfrac{31}{32}\).
e) \(\dfrac{1}{7}+\dfrac{1}{7^2}+\dfrac{1}{7^3}+...+\dfrac{1}{7^{100}}=\dfrac{7^{99}+7^{98}+7^{97}+...+7+1}{7^{100}}=\dfrac{\dfrac{7^{100}-1}{6}}{7^{100}}=\dfrac{7^{100}-1}{6.7^{100}}\)
Đặt \(A=\)\(\frac{1}{15}+\frac{1}{35}+...+\frac{1}{143}\)
\(=\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{11.13}\)
\(2A=\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{11.13}\)
\(2A=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{11}-\frac{1}{13}\)
\(2A=\frac{1}{3}-\frac{1}{13}=\frac{10}{39}\)
\(A=\frac{5}{39}\)
Câu còn lại cx dựa như vậy nhé bn !
Chúc bn hc tốt <3
bạn hỏcais gì vậy mình ko hiểu
b= 4/3 + 4/15 + 4/35 + 4/63 + 4/99 + 4/143
là sao vậy bn
kết quả là
7/41
\(B=\frac{4}{3}+\frac{4}{15}+\frac{4}{35}+\frac{4}{63}+\frac{4}{99}+\frac{4}{143}\)
\(B=\frac{4}{1.3}+\frac{4}{3.5}+\frac{4}{5.7}+\frac{4}{7.9}+\frac{4}{9.11}+\frac{4}{11.13}\)
sorry,mình đi ngủ
\(B=\dfrac{4}{3}+\dfrac{4}{15}+\dfrac{4}{35}+...+\dfrac{4}{143}\)
\(=4(\dfrac{1}{3}+\dfrac{1}{15}+\dfrac{1}{35}+...+\dfrac{1}{143})\)
vì \(\dfrac{1}{3}+\dfrac{1}{15}+\dfrac{1}{35}+...+\dfrac{1}{143}<\dfrac{1}{2}\) nên \(4(\dfrac{1}{3}+\dfrac{1}{15}+\dfrac{1}{35}+...+\dfrac{1}{143})<4*\dfrac{1}{2}=2\Rightarrow B<2\)