K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2020

F A D C P B M

23 tháng 3 2020

a) Do CD // AB, DM // BD nên ta dễ thấy : \(\Delta DMC\)đồng dạng với \(\Delta MCA\left(g.g\right)\)

\(\Rightarrow\frac{MC}{CA}=\frac{CD}{AB}=\frac{AF}{AB}\)( vì ADCF là hình bình hành nên CD = AF ) (1)

Lại có : FP // AC nên : \(\frac{CP}{CB}=\frac{AF}{AB}\left(2\right)\)

Từ (1) và (2) => \(\frac{CM}{CA}=\frac{CP}{CB}\)

Theo định lí Ta-let đảo, ta có : MP // AB

b) Gọi N và N' là giao điểm MP,DB với CF

Ta có : \(\frac{CN}{CF}=\frac{CM}{CA}=\frac{CD}{AB}\)(ở phần a)

\(\frac{CN'}{N'F}=\frac{CD}{FB}\Rightarrow\frac{AN'}{CF}=\frac{CD}{\left(FB+CD\right)}=\frac{CD}{AB}\)( vì CD = AF )

Vậy CN = CN' nên N' trùng N

Từ đó, ta suy ra được : MP, CF, DB đồng quy

a) Xét tứ giác AFCD có 

AF//CD(AB//CD, F∈AB)

AD//CF(gt)

Do đó: AFCD là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Xét tứ giác DCBK có 

DC//BK(DC//AB, K∈AB)

DK//CB(gt)

Do đó: DCBK là hình bình hành(Dấu hiệu nhận biết hình bình hành)

13 tháng 9 2023

a) Xét tam giác \(ADC\) có \(OF//DC\), theo định lí Thales ta có:

\(\frac{{AF}}{{AD}} = \frac{{AO}}{{AC}}\) (1)

Xét tam giác \(ABC\) có \(OE//BC\), theo định lí Thales ta có:

\(\frac{{AE}}{{AB}} = \frac{{AO}}{{AC}}\) (2)

Từ (1) và (2) suy ra, \(\frac{{AF}}{{AD}} = \frac{{AE}}{{AB}}\)

Xét tam giác \(ABD\) có:

\(\frac{{AF}}{{AD}} = \frac{{AE}}{{AB}}\)

Theo định lí Thales đảo suy ra \(EF//BD\).

b) Xét tam giác \(ADC\) có \(OH//AD\), theo định lí Thales ta có:

\(\frac{{CH}}{{CD}} = \frac{{CO}}{{AC}}\) (3)

Xét tam giác \(ABC\) có \(OG//AB\), theo định lí Thales ta có:

\(\frac{{CG}}{{BC}} = \frac{{CO}}{{AC}}\) (4)

Từ (3) và (4) suy ra, \(\frac{{CH}}{{CD}} = \frac{{CG}}{{BC}}\)

Theo định lí Thales đảo suy ra \(GH//BD\).

Xét tam giác \(BCD\) có \(GH//BD\), theo định lí Thales ta có:

\(\frac{{CH}}{{DH}} = \frac{{CG}}{{BG}} \Rightarrow CH.BG = DH.CG\) (điều phải chứng minh).

a: Xét ΔADC có OF//DC

nên AF/AD=AO/AC

Xét ΔABC có EO//BC

nên AE/AB=AO/AC

=>AF/AD=AE/AB

=>EF//BD

b: OH//AD

=>CH/CD=CO/CA

OG//AB

=>CG/BC=CO/CA

=>CG/BC=CH/CD

=>GH//BD

=>CH/DH=CG/BG

=>CH*BG=DH*CG

29 tháng 3 2022

a, Do CD//AB, DM//BD nên ta dễ thấy: tam giác DMC đồng dạng với tam giác BCA(g.g)
➞ MCCA=CDAB=AFABMCCA=CDAB=AFAB ( vì ADCF là hình bình hành nên CD=AF) (1)
Ta lại có: FP//AC nên:CPCB=AFABCPCB=AFAB (2)
Từ (1),(2) ta có: CMCA=CPCBCMCA=CPCB
Theo định lí Talet đảo ta có: MP//AB
b, Gọi N, N' là giao điểm của MP,DB với CF
Ta có:CNCF=CMCA=CDABCNCF=CMCA=CDAB ( theo phần a,)
CN′N′F=CDFBCN′N′F=CDFBsuy ra AN′CF=CD(FB+CD)=CDABAN′CF=CD(FB+CD)=CDAB ( vì CD=AF)
Vậy CN=CN' nên N' trùng N
Từ đó ta suy ra: MP,CF,DB đồng quy