K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2023

a: Xét ΔAMB và ΔDMC có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)

MB=MC

Do đó: ΔAMB=ΔDMC

b: Xét ΔMBD và ΔMCA có

MB=MC

\(\widehat{BMD}=\widehat{CMA}\)

MD=MA

Do đó: ΔMBD=ΔMCA

=>\(\widehat{MBD}=\widehat{MCA}\)

mà hai góc này là hai góc ở vị trí so le trong

nên BD//AC

c: Xét ΔDKB vuông tại K và ΔAHC vuông tại H có

DB=AC

\(\widehat{DBK}=\widehat{ACH}\)

Do đó: ΔDKB=ΔAHC

=>BK=CH

d: Xét tứ giác ABCE có

I là trung điểm chung của AC và BE

=>ABCE là hình bình hành

=>AB//CE và AB=CE

Ta có; ΔMAB=ΔMDC

=>AB=DC

Ta có: ΔMAB=ΔMDC

=>\(\widehat{MAB}=\widehat{MDC}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AB//DC

Ta có: AB//DC

AB//CE

DC,CE có điểm chung là C

Do đó: D,C,E thẳng hàng

ta có: AB=CD

AB=CE

Do đó: DC=CE

mà D,C,E thẳng hàng

nên C là trung điểm của DE

a: Xét ΔMAB và ΔMDC có

MA=MD

góc AMB=góc DMC

MB=MC

Do đo ΔMAB=ΔMDC

b: Xét tứ giác ABDC có

M là trung điểm chung của AD và BC

nên ABDC là hình bình hành

=>AC//BD

c: Xét ΔAHB vuông tại H và ΔDKC vuông tại K có

AB=DC

góc ABH=góc DCK

Do đo: ΔAHB=ΔDKC

=>AH=DK và BK=CH

14 tháng 12 2023

a: Xét ΔMAB và ΔMDC có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)

MB=MC

Do đó: ΔMAB=ΔMDC
b: Xét ΔMAC và ΔMDB có

MA=MD

\(\widehat{AMC}=\widehat{DMB}\)(hai góc đối đỉnh)

MC=MB

Do đó: ΔMAC=ΔMDB

=>\(\widehat{MAC}=\widehat{MDB}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AC//BD

c: ΔMAB=ΔMDC

=>\(\widehat{MBA}=\widehat{MCD}\)

Xét ΔABH vuông tại H và ΔDCK vuông tại K có

AB=DC

\(\widehat{ABH}=\widehat{DCK}\)

Do đó: ΔABH=ΔDCK

=>BH=CK

BH+HK=BK

CK+HK=CH

mà BH=CK

nen BK=CH

d: Xét tứ giác ABCE có

I là trung điểm chung của AC và BE

=>ABCE là hình bình hành

=>AB//CE và AB=CE

Ta có: AB//CE

AB//CD

CD,CE có điểm chung là C

Do đó: C,E,D thẳng hàng

Ta có: AB=EC

AB=CD

Do đó: EC=CD

mà C,E,D thẳng hàng

nên C là trung điểm của DE

9 tháng 3 2022

a) Xét tam giác AMB và tam giác DMC:

AM = DM (gt).

BM = CM (M là trung điểm của cạnh BC).

\(\widehat{AMB}=\widehat{DMC}\) (Đối đỉnh).

\(\Rightarrow\Delta AMB=\Delta DMC\left(c-g-c\right).\)

b) Xét tam giác ABD và tam giác DCA:

AB = DC \(\left(\Delta AMB=\Delta DMC\right).\)

AD chung.

\(\widehat{BAD}=\widehat{CDA}\) \(\left(\Delta AMB=\Delta DMC\right).\)

\(\Rightarrow\Delta ABD=\Delta DCA\left(c-g-c\right).\)

Xét \(\Delta ABD:AB+BD>AD.\Leftrightarrow AB+BD>2AM.\)

Mà \(BD=AC\) \(\left(\Delta ABD=\Delta DCA\right).\)

\(\Rightarrow AB+AC>2AM.\)