x+xy+y=5
x2+y2=5
giải hệ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có x + y 2 + y = 3 2 x 2 + y 2 + x y + x = 5 ⇔ 2 x 2 + 4 x y + 2 y 2 + 2 y = 6 2 x 2 + 2 y 2 + 2 x y + x = 5
Suy ra 2xy + 2y – x – 1 = 0 ⇔ (x + 1) (2y – 1) = 0 ⇔ x = −1 hoặc y = 1 2
Với x = −1, ta được y 2 – y – 2 = 0 ⇔ y = − 1 y = 2
Ta được hai nghiệm (−1; −1) và (−1; 2)
Với y = 1 2 , ta được x 2 + x − 9 4 = 0 ⇔ x = − 1 ± 10 2
Ta được hai nghiệm − 1 − 10 2 ; 1 2 và − 1 + 10 2 ; 1 2
Vậy hệ có bốn nghiệm (−1; −1); (−1; 2); − 1 − 10 2 ; 1 2 và − 1 + 10 2 ; 1 2
Đáp án:A
a. Trừ vế theo vế \(\left(1\right)\) cho \(\left(2\right)\) ta được \(x^2-y^2=4x-4y\)
\(\Leftrightarrow\left(x-y\right)\left(x+y-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=y\\x=4-y\end{matrix}\right.\)
TH1: \(x=y\)
Phương trình \(\left(1\right)\) tương đương:
\(x^2=2x\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=y=0\\x=y=2\end{matrix}\right.\)
TH2: \(x=4-y\)
Phương trình \(\left(2\right)\) tương đương:
\(y^2=4y-4\)
\(\Leftrightarrow y^2-4y+4=0\)
\(\Leftrightarrow\left(y-2\right)^2=0\)
\(\Leftrightarrow y=2\)
\(\Rightarrow x=2\)
Vậy hệ đã cho có nghiệm \(\left(x;y\right)\in\left\{\left(0;0\right);\left(2;2\right)\right\}\)
b. \(\left\{{}\begin{matrix}x+y+xy=5\\x^2+y^2=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy=5-\left(x+y\right)\\\left(x+y\right)^2-2xy=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy=5-\left(x+y\right)\\\left(x+y\right)^2-10+2\left(x+y\right)=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy=5-\left(x+y\right)\\\left(x+y\right)^2+2\left(x+y\right)-15=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy=5-\left(x+y\right)\\\left(x+y+5\right)\left(x+y-3\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy=5-\left(x+y\right)\\\left[{}\begin{matrix}x+y=-5\\x+y=3\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+y=-5\\xy=10\end{matrix}\right.\\\left\{{}\begin{matrix}x+y=3\\xy=2\end{matrix}\right.\end{matrix}\right.\)
TH1: \(\left\{{}\begin{matrix}x+y=-5\\xy=10\end{matrix}\right.\Leftrightarrow\) vô nghiệm
TH2: \(\left\{{}\begin{matrix}x+y=3\\xy=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\\\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\end{matrix}\right.\)
Vậy ...
ĐK: y − 2 x + 1 ≥ 0 , 4 x + y + 5 ≥ 0 , x + 2 y − 2 ≥ 0 , x ≤ 1
T H 1 : y − 2 x + 1 = 0 3 − 3 x = 0 ⇔ x = 1 y = 1 ⇒ 0 = 0 − 1 = 10 − 1 ( k o t / m ) T H 2 : x ≠ 1 , y ≠ 1
Đưa pt thứ nhất về dạng tích ta được
( x + y − 2 ) ( 2 x − y − 1 ) = x + y − 2 y − 2 x + 1 + 3 − 3 x ( x + y − 2 ) 1 y − 2 x + 1 + 3 − 3 x + y − 2 x + 1 = 0 ⇒ 1 y − 2 x + 1 + 3 − 3 x + y − 2 x + 1 > 0 ⇒ x + y − 2 = 0
Thay y= 2-x vào pt thứ 2 ta được x 2 + x − 3 = 3 x + 7 − 2 − x
⇔ x 2 + x − 2 = 3 x + 7 − 1 + 2 − 2 − x ⇔ ( x + 2 ) ( x − 1 ) = 3 x + 6 3 x + 7 + 1 + 2 + x 2 + 2 − x ⇔ ( x + 2 ) 3 3 x + 7 + 1 + 1 2 + 2 − x + 1 − x = 0
Do x ≤ 1 ⇒ 3 3 x + 7 + 1 + 1 2 + 2 − x + 1 − x > 0
Vậy x + 2 = 0 ⇔ x = − 2 ⇒ y = 4 (t/m)
\(a.2x\left(x-1\right)-3\left(x^2+4x\right)+x\left(x+2\right)\)
\(=2x^2-2x-3x^2-12x+x^2+2x\)
\(=-12x\)
\(b.\left(2x-3\right)\left(3x+5\right)-\left(x-1\right)\left(6x+2\right)+3-5x\)
\(=6x+10x-9x^2-15-6x^2-2x-6x-2+3-5x\)
\(=-15x^2+3x-14\)
\(c.\left(x-y\right)\left(x^2+xy+y^2\right)-\left(x+y\right)\left(x^2-y^2\right)\)
\(=x^3-y^3-x^3+y^3+x^2y-y^3\)
\(=y^3+x^2y\)
Lời giải:
a.
$x^2-x=y^2-1$
$\Leftrightarrow x^2-x+1=y^2$
$\Leftrightarrow 4x^2-4x+4=4y^2$
$\Leftrightarrow (2x-1)^2+3=(2y)^2$
$\Leftrightarrow 3=(2y)^2-(2x-1)^2=(2y-2x+1)(2y+2x-1)$
Đến đây xét các TH:
TH1: $2y-2x+1=1; 2y+2x-1=3$
TH2: $2y-2x+1=-1; 2y+2x-1=-3$
TH3: $2y-2x+1=3; 2y+2x-1=1$
TH4: $2y-2x+1=-3; 2y+2x-1=-1$
b.
$x^2+12x=y^2$
$\Leftrightarrow (x+6)^2=y^2+36$
$\Leftrightarrow 36=(x+6)^2-y^2=(x+6-y)(x+6+y)$
Đến đây xét trường hợp tương tự phần a.
c.
$x^2+xy-2y-x-5=0$
$\Leftrightarrow x^2+xy=x+2y+5$
$\Leftrightarrow 4x^2+4xy=4x+8y+20$
$\Leftrightarrow (2x+y)^2=4x+8y+20+y^2$
$\Leftrightarrow (2x+y)^2-2(2x+y)+1=y^2+6y+21$
$\Leftrightarrow (2x+y-1)^2=(y+3)^2+12$
$\Leftrightarrow (2x+y-1)^2-(y+3)^2=12$
$\Leftrightarrow (2x+y-1-y-3)(2x+y-1+y+3)=12$
$\Leftrightarrow (2x-4)(2x+2y+2)=12$
$\Leftrightarrow (x-2)(x+y+1)=3$
Đến đây đơn giản rồi.
a) \(x^2-x=y^2-1\)
\(\Rightarrow x^2-x+1=y^2\)
\(\Rightarrow4x^2-4x+4=4y^2\)
\(\Rightarrow4x^2-4x+1+3=\left(2y\right)^2\)
\(\Rightarrow\left(2x+1\right)^2-\left(2y\right)^2=-3\)
\(\Rightarrow\left(2x-2y+1\right)\left(2x+2y+1\right)=-3\)
Vì \(x,y\in Z\Rightarrow\left\{{}\begin{matrix}\left(2x-2y+1\right)\left(2x+2y+1\right)\in Z\\\left(2x-2y+1\right)\left(2x+2y+1\right)\inƯ\left(7\right)\end{matrix}\right.\)
Ta có bảng:
x-y | -1 | 0 | -2 | 1 |
x+y | 1 | -2 | 0 | -1 |
x | 0 | -1 | -1 | 0 |
y | 1 | -1 | -1 | -1 |
Vậy \(\left(x,y\right)\in\left\{\left(0;1\right);\left(-1;-1\right);\left(-1;-1\right);\left(0;-1\right)\right\}\)
Ta có hệ phương trình : \(\left\{{}\begin{matrix}x+xy+y=5\\x^2+y^2=5\left(I\right)\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x+y=5-xy\\x^2+y^2+2xy=5+2xy\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x+y=5-xy\\\left(x+y\right)^2=5+2xy\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x+y=5-xy\\\left(5-xy\right)^2=5+2xy\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x+y=5-xy\\25-10xy+x^2y^2-5-2xy=0\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x+y=5-xy\\20-12xy+x^2y^2=0\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x+y=5-xy\\\left(xy\right)^2-2xy-10xy+20=0\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x+y=5-xy\\\left(xy-10\right)\left(xy-2\right)=0\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x+y=5-xy\\\left[{}\begin{matrix}xy-10=0\\xy-2=0\end{matrix}\right.\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x+y=5-xy\\\left[{}\begin{matrix}x=10\\x=2\end{matrix}\right.\end{matrix}\right.\)
TH1 : x = 10 .
- Thay x = 10 vào phương trình ( I ) ta được :
\(10^2+y^2=5\)
=> \(y^2=-95\) ( vô lý )
-> x = 10 ( loại )
TH2 : x = 2 .
- Thay x = 2 vào phương trình ( I ) ta được :
\(2^2+y^2=5\)
=> \(y^2=1\)
=> \(y=1\)
Vậy phương trình trên có nghiệm duy nhất là \(\left(x;y\right)=\left(2;1\right)\)