K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2020

Hỏi đáp Toán

$a)$ Theo giả thiết ta có:

$AB//CM \Rightarrow \dfrac{AB}{CM}=\dfrac{EB}{EC}(1)$

$BN//CD \Rightarrow \dfrac{BN}{CD}=\dfrac{EB}{EC}(1)$

Từ $(1)$ và $(2)$, suy ra $\dfrac{AB}{CM}=\dfrac{BN}{CD}(3)$

Mặt khác, $AB=BC=CD$ nên từ $(3)$, suy ra $\dfrac{BC}{CM}=\dfrac{BN}{CB}$

Xét $\Delta NBC$ và $\Delta BCM$ có:

$\widehat{B}=\widehat{C}=90^0$

$\dfrac{BC}{CM}=\dfrac{BN}{CB}$ nên $\Delta NBC ~ \Delta BCM (c-g-c)$

$b)$ Theo câu $a)$ ta có: $\Delta NBC ~ \Delta BCM \Rightarrow \widehat{BCN}=\widehat{BMC}$ (so le trong)

Gọi $O$ là giao điểm của $BM$ và $CN$

Xét $\Delta OCM$ có: $\widehat{M}+\widehat{MCO}=\widehat{BCN}+\widehat{MCO}=90^0$

Suy ra: $BM \bot CN$

28 tháng 10 2020

Mn giải giúp e vs ((

a: ΔACB cân tại A

=>\(\widehat{ABC}=\widehat{ACB}\)

mà \(\widehat{ACB}=\widehat{FCN}\)(hai góc đối đỉnh)

nên \(\widehat{ABC}=\widehat{FCN}\)

Xét ΔEBM vuông tại M và ΔFCN vuông tại N có

BM=CN

\(\widehat{EBM}=\widehat{FCN}\)

Do đó: ΔEBM=ΔFCN

=>EM=FN

b: ED//AC

=>\(\widehat{EDB}=\widehat{ACB}\)(hai góc đồng vị)

mà \(\widehat{ABC}=\widehat{ACB}\)

nên \(\widehat{EDB}=\widehat{ABC}\)

=>\(\widehat{EBD}=\widehat{EDB}\)

=>ΔEBD cân tại E

ΔEBD cân tại E

mà EM là đường cao

nên M là trung điểm của BD

=>MB=MD

c: EM\(\perp\)BC

FN\(\perp\)BC

Do đó: EM//FN

Xét ΔOME vuông tại M và ΔONF vuông tại N có

ME=NF

\(\widehat{MEO}=\widehat{NFO}\)(hai góc so le trong, EM//FN)

Do đó: ΔOME=ΔONF

=>OE=OF