K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2020

\(\frac{x+1}{2003}+\frac{x+3}{2001}+\frac{x+5}{1999}=\frac{x+7}{1997}+\frac{x+9}{1995}+\frac{x+11}{1993}\)

\(\Leftrightarrow\frac{x+1}{2003}+1+\frac{x+3}{2001}+1+\frac{x+5}{1999}+1=\frac{x+7}{1997}+1+\frac{x+9}{1995}+1+\frac{x+11}{1993}+1\)

\(\Leftrightarrow\frac{x+2004}{2003}+\frac{x+2004}{2001}+\frac{x+2004}{1999}=\frac{x+2004}{1997}+\frac{x+2004}{1995}+\frac{x+2004}{1993}\)

\(\Leftrightarrow\frac{x+2004}{2003}+\frac{x+2004}{2001}+\frac{x+2004}{1999}-\frac{x+2004}{1997}-\frac{x+2004}{1995}-\frac{x+2004}{1993}=0\)

\(\Leftrightarrow\left(x+2004\right)\left(\frac{1}{2003}+\frac{1}{2001}+\frac{1}{1999}+\frac{1}{1997}+\frac{1}{1995}+\frac{1}{1993}\right)=0\)

\(\Leftrightarrow x+2004=0\) ( do \(\frac{1}{2003}+\frac{1}{2001}+\frac{1}{1999}+\frac{1}{1997}+\frac{1}{1995}+\frac{1}{1993}\ne0\))

\(\Leftrightarrow x=-2004\)

2 tháng 4 2020

\(\frac{x+1}{2003}\)\(+\)\(\frac{x+3}{2001}\)\(+\)\(\frac{x+5}{1999}\)\(\frac{x+7}{1997}\)\(+\frac{x+9}{1995}\)\(+\frac{x+11}{1993}\)

\(\Leftrightarrow\)\(\frac{x+1}{2003}\)\(+1+\)\(\frac{x+3}{2001}\)\(+1+\frac{x+5}{1999}\)\(\frac{x+7}{1997}\)\(+1+\frac{x+9}{1995}\)\(+1+\frac{x+11}{1993}\)

\(\Leftrightarrow\frac{x+2004}{2003}\)\(+\frac{x+2004}{2001}\)\(+\frac{x+2004}{1999}\)\(-\frac{x+2004}{1997}\)\(-\frac{x+2004}{1995}\)\(-\frac{x+2004}{1993}\)\(=0\)

\(\Leftrightarrow\left(x+2004\right)\left(\frac{1}{2003}+\frac{1}{2001}+\frac{1}{1999}-\frac{1}{1997}-\frac{1}{1995}-\frac{1}{1993}\right)=0\)

\(\Leftrightarrow x+2004=0\)(vì tích kia có kết quả khác 0)

\(\Leftrightarrow x=-2004\)

Vậy PT có tập nghiệm S = {-2004}

27 tháng 2 2020

Ta có : \(\frac{x-1991}{9}+\frac{x-1993}{7}+\frac{x-1995}{5}+\frac{x-1997}{3}+\frac{x-1999}{1}\)\(=\frac{x-9}{1991}+\frac{x-7}{1993}+\frac{x-5}{1995}+\frac{x-3}{1997}+\frac{x-1}{1999}\)

\(\Rightarrow\left(\frac{x-1991}{9}-1\right)+\left(\frac{x-1993}{7}-1\right)+\left(\frac{x-1995}{5}-1\right)+\left(\frac{x-1997}{3}-1\right)+\left(\frac{x-1999}{1}-1\right)\)

\(=\left(\frac{x-9}{1991}-1\right)+\left(\frac{x-7}{1993}-1\right)+\left(\frac{x-5}{1995}-1\right)+\left(\frac{x-3}{1997}-1\right)+\left(\frac{x-1}{1999}\right)\)

\(\Rightarrow\frac{x-2000}{9}+\frac{x-2000}{7}+\frac{x-2000}{5}+\frac{x-2000}{3}\)

\(=\frac{x-2000}{1991}+\frac{x-2000}{1993}+\frac{x-2000}{1995}+\frac{x-2000}{1997}+\frac{x-2000}{1999}\)

\(\Rightarrow\left(x-2000\right)\left(\frac{1}{9}+\frac{1}{7}+\frac{1}{5}+\frac{1}{3}\right)=\left(x-2000\right)\left(\frac{1}{1991}+\frac{1}{1993}+\frac{1}{1995}+\frac{1}{1997}+\frac{1}{1999}\right)\)

\(\Rightarrow\left(x-2000\right)\left(\frac{1}{9}+\frac{1}{7}+\frac{1}{5}+\frac{1}{3}\right)-\left(x-2000\right)\left(\frac{1}{1991}+\frac{1}{1993}+\frac{1}{1995}+\frac{1}{1997}+\frac{1}{1999}\right)=0\)

\(\Rightarrow\left(x-2000\right)\left[\left(\frac{1}{9}+\frac{1}{7}+\frac{1}{5}+\frac{1}{3}\right)-\left(\frac{1}{1991}+\frac{1}{1993}+\frac{1}{1995}+\frac{1}{1997}+\frac{1}{1999}\right)\right]=0\)

Vì \(\left(\frac{1}{9}+\frac{1}{7}+\frac{1}{5}+\frac{1}{3}\right)-\left(\frac{1}{1991}+\frac{1}{1993}+\frac{1}{1995}+\frac{1}{1997}+\frac{1}{1999}\right)\ne0\)

=> x - 2000 = 0 

=> x = 2000

1 tháng 4 2020

cái cuối là =-4 nhé!

1 tháng 4 2020

\(\frac{x+2001}{5}+\frac{x+1999}{7}+\frac{x+1997}{9}+\frac{x+1995}{11}=-4\)

\(\Rightarrow\frac{x+2001}{5}+1+\frac{x+1999}{7}+1+\frac{x+1997}{9}+1+\frac{x+1995}{11}+1=0\)

\(\Rightarrow\frac{x+2006}{5}+\frac{x+2006}{7}+\frac{x+2006}{9}+\frac{x+2006}{11}=0\)

\(\Rightarrow\left(x+2006\right)\left(\frac{1}{5}+\frac{1}{7}+\frac{1}{9}+\frac{1}{11}\right)=0\)

\(\Rightarrow x+2006=0\)vì \(\frac{1}{5}+\frac{1}{7}+\frac{1}{9}+\frac{1}{11}>0\)

\(\Rightarrow x=-2006\)

19 tháng 4 2020

\(\frac{x+6}{1999}+\frac{x+8}{1997}=\frac{x+10}{1995}+\frac{x+12}{1993}\)

\(\Leftrightarrow\frac{x+6}{1999}+1+\frac{x+8}{1997}+1=\frac{x+10}{1995}+1+\frac{x+12}{1993}+1\)

\(\Leftrightarrow\frac{x+2005}{1999}+\frac{x+2005}{1997}=\frac{x+2005}{1995}+\frac{x+2005}{1993}\)

\(\Leftrightarrow\left(x+2005\right)\left(\frac{1}{1999}+\frac{1}{1997}-\frac{1}{1995}-\frac{1}{1993}\right)=0\)

\(\Leftrightarrow x+2005=0\left(\frac{1}{1999}+\frac{1}{1997}-\frac{1}{1995}-\frac{1}{1993}\ne0\right)\)

<=> x=-2005

Vậy x=-2005

19 tháng 4 2020

bạn chỉ cần cộng mỗi phân số với 1 là xong!

Vd: x+6/1999 +1 +x+8/1997 +1 = x+10/1995 +1 +x+12/1993 +1

(không quen sử dụng cái phần mềm này lắm nên mình không làm nốt được)

31 tháng 3 2015

Trừ cả 2 vế cho 7 ta được:

\(\frac{x^2+2006x-1}{2006}-1+\frac{x^2+2006x-2}{2005}-1+...+\frac{x^2+2006x-7}{2000}-1\)

\(=\frac{x^2+2006x-8}{1999}-1+...+\frac{x^2+2006x-14}{1993}-1\)

=>  \(\frac{x^2+2006x-2007}{2006}+\frac{x^2+2006x-2007}{2005}+...+\frac{x^2+2006x-2007}{2000}=\frac{x^2+2006x-2007}{1999}+...+\frac{x^2+2006x-2007}{1993}\)

=> \(\left(x^2+2006x-2007\right)\left(\frac{1}{2006}+\frac{1}{2005}+...+\frac{1}{2000}-\frac{1}{1999}-...-\frac{1}{1993}\right)=0\)

=> x2 + 2006x -2007 = 0.  Vì \(\frac{1}{2006}+\frac{1}{2005}+...+\frac{1}{2000}

1 tháng 4 2015

mình sửa lại chút sai xót bài giải trên: nhận xét 1/2006+...+ 1/2000-1/1999-...- 1/993 < 0 nhé!  sửa dấu + thành dấu - 

2 tháng 10 2017

\(a.\left(\frac{x+1}{2000}+1\right)+\left(\frac{x+2}{1999}+1\right)+\left(\frac{x+3}{1998}+1\right)+\left(\frac{x+4}{1997}+1\right)=0\)

\(=\frac{x+2001}{2000}+\frac{x+2001}{1999}+\frac{x+2001}{1998}+\frac{x+2001}{1997}=0\)

\(=\left(x+2001\right).\left(\frac{1}{2000}+\frac{1}{1999}+\frac{1}{1998}+\frac{1}{1997}\right)=0\)

\(=>x+2001=0\)

\(x=-2001\)

\(b.\left(\frac{x+1}{1999}-1\right)+\left(\frac{x+2}{2000}-1\right)+\left(\frac{x+3}{2001}-1\right)=\left(\frac{x+4}{2002}-1\right)+\left(\frac{x+5}{2003}-1\right)\)\(+\left(\frac{x+6}{2004}-1\right)\)

\(\frac{x+1998}{1999}+\frac{x+1998}{2000}+\frac{x+1998}{2001}=\frac{x+1998}{2002}+\frac{x+1998}{2003}+\frac{x+1998}{2004}\)

\(\frac{x+1998}{1999}+\frac{x+1998}{2000}+\frac{x+1998}{2001}-\frac{x+1998}{2002}-\frac{x+1998}{2003}-\frac{x+1998}{2004}=0\)

\(\left(x+1998\right).\left(\frac{1}{1999}+\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}-\frac{1}{2004}\right)=0\)

\(=>x+1998=0\)

\(x=-1998\)

6 tháng 4 2018

dễ quá!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

9 tháng 1 2018

\(pt\Leftrightarrow\left(x+1\right)\left(\frac{1}{2005}+\frac{1}{2003}-\frac{1}{2001}-\frac{1}{1999}\right)=0\Leftrightarrow x+1=0\Leftrightarrow x=-1\)

9 tháng 1 2018

\(\frac{x+1}{2005}+\frac{x+1}{2003}=\frac{x+1}{2001}+\frac{x+1}{1999}.\)

\(\Rightarrow\frac{x+1}{2005}+\frac{x+1}{2003}-\frac{x+1}{2001}-\frac{x+1}{1999}=0\)

\(\Rightarrow\left(x+1\right)\left(\frac{1}{2005}+\frac{1}{2003}-\frac{1}{2001}-\frac{1}{1999}\right)=0\)

Mà \(\frac{1}{2005}+\frac{1}{2003}-\frac{1}{2001}-\frac{1}{1999}#0\)

\(\Rightarrow x+1=0\Rightarrow x=-1\)

Vậy nghiệm của pt là x = -1

Giải các phương trình sau : ( biến đổi đặc biệt )a) \(\frac{x+1}{35}\)+ \(\frac{x+3}{33}\)= \(\frac{x+5}{31}\)+ \(\frac{x+7}{29}\)( HD : cộng thêm 1 vào các hạng tử )b) \(\frac{x-10}{1994}\)+ \(\frac{x-8}{1996}\)+\(\frac{x-6}{1998}\)+ \(\frac{x-4}{2000}\)+ \(\frac{x-2}{2002}\)= \(\frac{x-2002}{2}\)+ \(\frac{x-2000}{4}\)+ \(\frac{x-1988}{6}\)+ \(\frac{x-1996}{8}\)+ \(\frac{x-1994}{10}\)( HD : trừ đi 1 vào các hạng tử...
Đọc tiếp

Giải các phương trình sau : ( biến đổi đặc biệt )

a) \(\frac{x+1}{35}\)\(\frac{x+3}{33}\)\(\frac{x+5}{31}\)\(\frac{x+7}{29}\)( HD : cộng thêm 1 vào các hạng tử )

b) \(\frac{x-10}{1994}\)\(\frac{x-8}{1996}\)+\(\frac{x-6}{1998}\)\(\frac{x-4}{2000}\)\(\frac{x-2}{2002}\)\(\frac{x-2002}{2}\)\(\frac{x-2000}{4}\)\(\frac{x-1988}{6}\)\(\frac{x-1996}{8}\)\(\frac{x-1994}{10}\)( HD : trừ đi 1 vào các hạng tử ) 

c) \(\frac{x-1991}{9}\)\(\frac{x-1993}{7}\)\(\frac{x-1995}{5}\)\(\frac{x-1997}{3}\)\(\frac{x-1991}{1}\)\(\frac{x-9}{1991}\)\(\frac{x-7}{1993}\)\(\frac{x-5}{1995}\)\(\frac{x-3}{1997}\)\(\frac{x-1}{1999}\)( HD : trừ đi 1 vào các hạng tử )

d) \(\frac{x-85}{15}\)\(\frac{x-74}{13}\)\(\frac{x-67}{11}\)\(\frac{x-64}{9}\)= 10  ( Chú ý : 10 = 1 + 2 + 3 + 4 )

e) \(\frac{x-1}{13}\)\(\frac{2x-13}{15}\)\(\frac{3x-15}{27}\)\(\frac{4x-27}{29}\)( HD : Thêm hoặc bớt 1 vào các hạng tử )

 

1
16 tháng 4 2020

a, \(\frac{x+1}{35}+\frac{x+3}{33}=\frac{x+5}{31}+\frac{x+7}{29}\)

\(\frac{x+36}{35}+\frac{x+36}{33}-\frac{x+36}{31}-\frac{x+36}{29}=0\)

\(\left(x+36\right)\left(\frac{1}{35}+\frac{1}{33}-\frac{1}{31}-\frac{1}{29}\right)=0\)

\(=>x+36=0\)

\(=>x=36\)