Giải phương trình : \(\frac{x+5}{1999}+\frac{x+7}{1997}=\frac{x+9}{1999}+\frac{x+11}{1993}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x+1}{2003}+\frac{x+3}{2001}+\frac{x+5}{1999}=\frac{x+7}{1997}+\frac{x+9}{1995}+\frac{x+11}{1993}\)
\(\Leftrightarrow\frac{x+1}{2003}+1+\frac{x+3}{2001}+1+\frac{x+5}{1999}+1=\frac{x+7}{1997}+1+\frac{x+9}{1995}+1+\frac{x+11}{1993}+1\)
\(\Leftrightarrow\frac{x+2004}{2003}+\frac{x+2004}{2001}+\frac{x+2004}{1999}=\frac{x+2004}{1997}+\frac{x+2004}{1995}+\frac{x+2004}{1993}\)
\(\Leftrightarrow\frac{x+2004}{2003}+\frac{x+2004}{2001}+\frac{x+2004}{1999}-\frac{x+2004}{1997}-\frac{x+2004}{1995}-\frac{x+2004}{1993}=0\)
\(\Leftrightarrow\left(x+2004\right)\left(\frac{1}{2003}+\frac{1}{2001}+\frac{1}{1999}+\frac{1}{1997}+\frac{1}{1995}+\frac{1}{1993}\right)=0\)
\(\Leftrightarrow x+2004=0\) ( do \(\frac{1}{2003}+\frac{1}{2001}+\frac{1}{1999}+\frac{1}{1997}+\frac{1}{1995}+\frac{1}{1993}\ne0\))
\(\Leftrightarrow x=-2004\)
\(\frac{x+1}{2003}\)\(+\)\(\frac{x+3}{2001}\)\(+\)\(\frac{x+5}{1999}\)= \(\frac{x+7}{1997}\)\(+\frac{x+9}{1995}\)\(+\frac{x+11}{1993}\)
\(\Leftrightarrow\)\(\frac{x+1}{2003}\)\(+1+\)\(\frac{x+3}{2001}\)\(+1+\frac{x+5}{1999}\)= \(\frac{x+7}{1997}\)\(+1+\frac{x+9}{1995}\)\(+1+\frac{x+11}{1993}\)
\(\Leftrightarrow\frac{x+2004}{2003}\)\(+\frac{x+2004}{2001}\)\(+\frac{x+2004}{1999}\)\(-\frac{x+2004}{1997}\)\(-\frac{x+2004}{1995}\)\(-\frac{x+2004}{1993}\)\(=0\)
\(\Leftrightarrow\left(x+2004\right)\left(\frac{1}{2003}+\frac{1}{2001}+\frac{1}{1999}-\frac{1}{1997}-\frac{1}{1995}-\frac{1}{1993}\right)=0\)
\(\Leftrightarrow x+2004=0\)(vì tích kia có kết quả khác 0)
\(\Leftrightarrow x=-2004\)
Vậy PT có tập nghiệm S = {-2004}
Ta có : \(\frac{x-1991}{9}+\frac{x-1993}{7}+\frac{x-1995}{5}+\frac{x-1997}{3}+\frac{x-1999}{1}\)\(=\frac{x-9}{1991}+\frac{x-7}{1993}+\frac{x-5}{1995}+\frac{x-3}{1997}+\frac{x-1}{1999}\)
\(\Rightarrow\left(\frac{x-1991}{9}-1\right)+\left(\frac{x-1993}{7}-1\right)+\left(\frac{x-1995}{5}-1\right)+\left(\frac{x-1997}{3}-1\right)+\left(\frac{x-1999}{1}-1\right)\)
\(=\left(\frac{x-9}{1991}-1\right)+\left(\frac{x-7}{1993}-1\right)+\left(\frac{x-5}{1995}-1\right)+\left(\frac{x-3}{1997}-1\right)+\left(\frac{x-1}{1999}\right)\)
\(\Rightarrow\frac{x-2000}{9}+\frac{x-2000}{7}+\frac{x-2000}{5}+\frac{x-2000}{3}\)
\(=\frac{x-2000}{1991}+\frac{x-2000}{1993}+\frac{x-2000}{1995}+\frac{x-2000}{1997}+\frac{x-2000}{1999}\)
\(\Rightarrow\left(x-2000\right)\left(\frac{1}{9}+\frac{1}{7}+\frac{1}{5}+\frac{1}{3}\right)=\left(x-2000\right)\left(\frac{1}{1991}+\frac{1}{1993}+\frac{1}{1995}+\frac{1}{1997}+\frac{1}{1999}\right)\)
\(\Rightarrow\left(x-2000\right)\left(\frac{1}{9}+\frac{1}{7}+\frac{1}{5}+\frac{1}{3}\right)-\left(x-2000\right)\left(\frac{1}{1991}+\frac{1}{1993}+\frac{1}{1995}+\frac{1}{1997}+\frac{1}{1999}\right)=0\)
\(\Rightarrow\left(x-2000\right)\left[\left(\frac{1}{9}+\frac{1}{7}+\frac{1}{5}+\frac{1}{3}\right)-\left(\frac{1}{1991}+\frac{1}{1993}+\frac{1}{1995}+\frac{1}{1997}+\frac{1}{1999}\right)\right]=0\)
Vì \(\left(\frac{1}{9}+\frac{1}{7}+\frac{1}{5}+\frac{1}{3}\right)-\left(\frac{1}{1991}+\frac{1}{1993}+\frac{1}{1995}+\frac{1}{1997}+\frac{1}{1999}\right)\ne0\)
=> x - 2000 = 0
=> x = 2000
Giải phương trình sau:
\(\frac{x+2001}{5}+\frac{x+1999}{7}+\frac{x+1997}{9}+\frac{x+1995}{11}=-4.\)-4
\(\frac{x+2001}{5}+\frac{x+1999}{7}+\frac{x+1997}{9}+\frac{x+1995}{11}=-4\)
\(\Rightarrow\frac{x+2001}{5}+1+\frac{x+1999}{7}+1+\frac{x+1997}{9}+1+\frac{x+1995}{11}+1=0\)
\(\Rightarrow\frac{x+2006}{5}+\frac{x+2006}{7}+\frac{x+2006}{9}+\frac{x+2006}{11}=0\)
\(\Rightarrow\left(x+2006\right)\left(\frac{1}{5}+\frac{1}{7}+\frac{1}{9}+\frac{1}{11}\right)=0\)
\(\Rightarrow x+2006=0\)vì \(\frac{1}{5}+\frac{1}{7}+\frac{1}{9}+\frac{1}{11}>0\)
\(\Rightarrow x=-2006\)
\(\frac{x+6}{1999}+\frac{x+8}{1997}=\frac{x+10}{1995}+\frac{x+12}{1993}\)
\(\Leftrightarrow\frac{x+6}{1999}+1+\frac{x+8}{1997}+1=\frac{x+10}{1995}+1+\frac{x+12}{1993}+1\)
\(\Leftrightarrow\frac{x+2005}{1999}+\frac{x+2005}{1997}=\frac{x+2005}{1995}+\frac{x+2005}{1993}\)
\(\Leftrightarrow\left(x+2005\right)\left(\frac{1}{1999}+\frac{1}{1997}-\frac{1}{1995}-\frac{1}{1993}\right)=0\)
\(\Leftrightarrow x+2005=0\left(\frac{1}{1999}+\frac{1}{1997}-\frac{1}{1995}-\frac{1}{1993}\ne0\right)\)
<=> x=-2005
Vậy x=-2005
bạn chỉ cần cộng mỗi phân số với 1 là xong!
Vd: x+6/1999 +1 +x+8/1997 +1 = x+10/1995 +1 +x+12/1993 +1
(không quen sử dụng cái phần mềm này lắm nên mình không làm nốt được)
Trừ cả 2 vế cho 7 ta được:
\(\frac{x^2+2006x-1}{2006}-1+\frac{x^2+2006x-2}{2005}-1+...+\frac{x^2+2006x-7}{2000}-1\)
\(=\frac{x^2+2006x-8}{1999}-1+...+\frac{x^2+2006x-14}{1993}-1\)
=> \(\frac{x^2+2006x-2007}{2006}+\frac{x^2+2006x-2007}{2005}+...+\frac{x^2+2006x-2007}{2000}=\frac{x^2+2006x-2007}{1999}+...+\frac{x^2+2006x-2007}{1993}\)
=> \(\left(x^2+2006x-2007\right)\left(\frac{1}{2006}+\frac{1}{2005}+...+\frac{1}{2000}-\frac{1}{1999}-...-\frac{1}{1993}\right)=0\)
=> x2 + 2006x -2007 = 0. Vì \(\frac{1}{2006}+\frac{1}{2005}+...+\frac{1}{2000}
mình sửa lại chút sai xót bài giải trên: nhận xét 1/2006+...+ 1/2000-1/1999-...- 1/993 < 0 nhé! sửa dấu + thành dấu -
\(a.\left(\frac{x+1}{2000}+1\right)+\left(\frac{x+2}{1999}+1\right)+\left(\frac{x+3}{1998}+1\right)+\left(\frac{x+4}{1997}+1\right)=0\)
\(=\frac{x+2001}{2000}+\frac{x+2001}{1999}+\frac{x+2001}{1998}+\frac{x+2001}{1997}=0\)
\(=\left(x+2001\right).\left(\frac{1}{2000}+\frac{1}{1999}+\frac{1}{1998}+\frac{1}{1997}\right)=0\)
\(=>x+2001=0\)
\(x=-2001\)
\(b.\left(\frac{x+1}{1999}-1\right)+\left(\frac{x+2}{2000}-1\right)+\left(\frac{x+3}{2001}-1\right)=\left(\frac{x+4}{2002}-1\right)+\left(\frac{x+5}{2003}-1\right)\)\(+\left(\frac{x+6}{2004}-1\right)\)
\(\frac{x+1998}{1999}+\frac{x+1998}{2000}+\frac{x+1998}{2001}=\frac{x+1998}{2002}+\frac{x+1998}{2003}+\frac{x+1998}{2004}\)
\(\frac{x+1998}{1999}+\frac{x+1998}{2000}+\frac{x+1998}{2001}-\frac{x+1998}{2002}-\frac{x+1998}{2003}-\frac{x+1998}{2004}=0\)
\(\left(x+1998\right).\left(\frac{1}{1999}+\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}-\frac{1}{2004}\right)=0\)
\(=>x+1998=0\)
\(x=-1998\)
dễ quá!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
\(pt\Leftrightarrow\left(x+1\right)\left(\frac{1}{2005}+\frac{1}{2003}-\frac{1}{2001}-\frac{1}{1999}\right)=0\Leftrightarrow x+1=0\Leftrightarrow x=-1\)
\(\frac{x+1}{2005}+\frac{x+1}{2003}=\frac{x+1}{2001}+\frac{x+1}{1999}.\)
\(\Rightarrow\frac{x+1}{2005}+\frac{x+1}{2003}-\frac{x+1}{2001}-\frac{x+1}{1999}=0\)
\(\Rightarrow\left(x+1\right)\left(\frac{1}{2005}+\frac{1}{2003}-\frac{1}{2001}-\frac{1}{1999}\right)=0\)
Mà \(\frac{1}{2005}+\frac{1}{2003}-\frac{1}{2001}-\frac{1}{1999}#0\)
\(\Rightarrow x+1=0\Rightarrow x=-1\)
Vậy nghiệm của pt là x = -1
a, \(\frac{x+1}{35}+\frac{x+3}{33}=\frac{x+5}{31}+\frac{x+7}{29}\)
\(\frac{x+36}{35}+\frac{x+36}{33}-\frac{x+36}{31}-\frac{x+36}{29}=0\)
\(\left(x+36\right)\left(\frac{1}{35}+\frac{1}{33}-\frac{1}{31}-\frac{1}{29}\right)=0\)
\(=>x+36=0\)
\(=>x=36\)