Cho tam giác có góc B bằng C: Vẽ AD là phân giác góc A. Chứng minh rằng:
a) tam giác ADB = tam giác ADC
b) AD là đường cao của tam giác ABC
Giúp mih vs c.bn. Mih c.ơn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔADB và ΔADC có
AB=AC
AD chung
BD=CD
Do đó: ΔADB=ΔADC
b: Ta có: ΔABD=ΔACD
=>\(\widehat{BAD}=\widehat{CAD}\)
=>AD là phân giác của góc BAC
c: Xét ΔADM vuông tại M và ΔADN vuông tại N có
AD chung
\(\widehat{DAM}=\widehat{DAN}\)
Do đó: ΔADM=ΔADN
=>AM=AN
Xét ΔABC có \(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)
nên MN//BC
a: Xét ΔABD và ΔACD có
AB=AC
AD chung
BD=CD
Do đó: ΔABD=ΔACD
b: Ta có: ΔABC cân tại A
mà AD là đường trung tuyến
nên AD là tia phân giác của góc BAC
c: Ta có: ΔABC cân tại A
mà AD là đường trung tuyến
nên AD là đường cao
=>AD⊥BC
mà d//BC
nên AD⊥d
a) Xét ΔΔABD và ΔΔACD có:
AB = AC (gt)
AD: cạnh chung
BD = CD (D là trung điểm của BC)
⇒Δ⇒ΔABD = ΔΔACD (c.c.c)
b)b) Ta có: ΔΔABD = ΔΔACD (theo ý a)
⇒\(\widehat{BAD}\)=\(\widehat{CAD}\) (2gocs tương ứng )
⇒ AD là tia phân giác của \(\widehat{BAC}\)
c) Ta có: ΔΔABD = ΔΔACD (theo ý a)
⇒ \(\widehat{ADB}\)=\(\widehat{ADC}\)(2 góc tương ứng )
mà \(\widehat{ADB}\) + \(\widehat{ADC}\)=18001800( 2 góc kề bù )
⇒\(\widehat{ADB}\)=\(\widehat{ADC}\)= 900900
⇒ AD ⊥ BC
Lại có: d // BC (gt) ⇒ AD ⊥ d
(Bạn tự vẽ hình giùm)
a/ \(\Delta BHD\)vuông và \(\Delta CKD\)vuông có: \(\widehat{B}=\widehat{C}\)(\(\Delta ABC\)cân tại A)
BD = CD (AD là đường trung tuyến của \(\Delta ABC\))
=> \(\Delta BHD\)vuông = \(\Delta CKD\)vuông (ch.gn) (đpcm)
b/ Ta có \(\Delta BHD\)= \(\Delta CKD\)(cmt) => BH = CK (hai cạnh tương ứng)
và AB = AC (\(\Delta ABC\)cân tại A)
=> AB - BH = AC - CK
=> AH = AK => \(\Delta AHK\)cân tại A (đpcm)
c/ Ta có \(\Delta AHK\)cân tại A (cmt) => \(\widehat{AHK}=\frac{180^o-\widehat{A}}{2}\)(1)
và \(\Delta ABC\)cân tại A (gt) => \(\widehat{B}=\frac{180^o-\widehat{A}}{2}\)(2)
Từ (1) và (2) => \(\widehat{AHK}=\widehat{B}\)ở vị trí đồng vị => HK // BC (đpcm)
d/ \(\Delta ADB\)và \(\Delta ADC\)có: AB = AC (\(\Delta ABC\)cân tại A)
\(\widehat{B}=\widehat{C}\)(\(\Delta ABC\)cân tại A)
BD = CD (AD là đường trung tuyến của \(\Delta ABC\))
=> \(\Delta ADB\)= \(\Delta ADC\)(c. g. c) => \(\widehat{BAD}=\widehat{CAD}\)(hai góc tương ứng) => AD là đường phân giác của \(\Delta ABC\)(đpcm)
e/ Ta có \(\Delta ADB\)= \(\Delta ADC\)(cmt) =>\(\widehat{ADB}=\widehat{ADC}\)(hai góc tương ứng)
Mà \(\widehat{ADB}+\widehat{ADC}=180^o\)(hai góc kề bù)
=> \(\widehat{ADB}=\widehat{ADC}=90^o\)=> AD \(\perp\)BC
và AD là đường trung tuyến của \(\Delta ABC\)
=> AD là đường trung trực của BC
Mà HK // BC
=> AD là đường trung trực của HK (đpcm)
a: Xét ΔABD và ΔACD có
AB=AC
BD=CD
AD chung
Do đó: ΔABD=ΔACD
b: ΔABD=ΔACD
=>\(\widehat{BAD}=\widehat{CAD}\)
=>AD là phân giác của \(\widehat{BAC}\)
c: ΔABD=ΔACD
=>\(\widehat{ADB}=\widehat{ADC}\)
mà \(\widehat{ADB}+\widehat{ADC}=180^0\)(hai góc kề bù)
nên \(\widehat{ADB}=\widehat{ADC}=\dfrac{180^0}{2}=90^0\)
=>AD\(\perp\)BC
a, tam giác ABC có : ^B = ^C
=> tam giác ABC cân tại A (dh)
=> AB = AC (đn)
xét tam giác ADB và tam giác ADC có : ^B = ^C (gt)
^BAD = ^CAD do AD là pg của ^BAC (gt)
=> tam giác ADB = tam giác ADC (g-c-g)
b, tam giác ADB = tam giác ADC (Câu a)
=> ^ADB = ^ADC (đn)
mà ^ADB + ^ADC = 180 (kb)
=> ^ADB = 90
=> AD _|_ BC
=> AD là đcao của tam giác ABC