tìm số nguyên x,y,z,biết
\(\frac{-x}{6}\)=\(\frac{14}{-y}\)=\(\frac{z}{60}\)=\(\frac{2}{3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{8}=\frac{2x+y-3}{6+4-3}=\frac{-14}{7}=-2\)
\(\frac{x}{3}=-2\Rightarrow x=-2.3=-6\)
\(\frac{y}{4}=-2\Rightarrow y=-2.4=-8\)
\(\frac{z}{8}=-2\Rightarrow z=-2.8=-16\)
k nha
Ta có : \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{18}=\frac{y}{24}\)(1)
\(\frac{y}{6}=\frac{z}{8}\Rightarrow\frac{y}{24}=\frac{z}{32}\)(2)
Từ (1) ; (2) ta có : \(\frac{x}{18}=\frac{y}{24}=\frac{z}{32}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\frac{x}{18}=\frac{y}{24}=\frac{z}{32}=\frac{2x+y-3}{2.18+24-3}=-\frac{14}{57}\)
\(\Leftrightarrow\frac{x}{18}=-\frac{14}{57};\Leftrightarrow\frac{y}{24}=-\frac{14}{57};\frac{z}{32}=-\frac{14}{57}\)
Tự tính, hỏng mt r
1, ta co \(\frac{x}{5}=\frac{y}{6}=\frac{x}{20}=\frac{y}{24}\)
\(\frac{y}{8}=\frac{z}{7}=\frac{y}{24}=\frac{z}{21}\)
=>\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{69}{23}=3\)
=>\(x=3\cdot20=60\)
\(y=3\cdot24=72\)
\(z=3\cdot21=63\)
3. ta co \(\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}=\frac{x+y-z+t}{15-7+3-1}=\frac{10}{10}=1\)
=> \(x=1\cdot15=15\)
\(y=1\cdot7=7\)
\(z=1\cdot3=3\)
\(t=1\cdot1=1\)
Ta có: \(\frac{-x}{6}=\frac{14}{y}=\frac{x}{60}=\frac{2}{3}\)
\(\Leftrightarrow\left\{{}\begin{matrix}\frac{-x}{6}=\frac{2}{3}\\\frac{14}{y}=\frac{2}{3}\\\frac{z}{60}=\frac{2}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-x=\frac{2\cdot6}{3}\\y=\frac{14\cdot3}{2}\\z=\frac{2\cdot60}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-4\\y=21\\z=40\end{matrix}\right.\)
Vậy: x=-4; y=21 và z=40
a) Ta có:
\(\begin{array}{l}\frac{x}{3} = \frac{y}{4} \Rightarrow \frac{x}{3}.\frac{1}{5} = \frac{y}{4}.\frac{1}{5} \Rightarrow \frac{x}{{15}} = \frac{y}{{20}};\\\frac{y}{5} = \frac{z}{6} \Rightarrow \frac{y}{5}.\frac{1}{4} = \frac{z}{6}.\frac{1}{4} \Rightarrow \frac{y}{{20}} = \frac{z}{{24}}\end{array}\)
Vậy \(\frac{x}{{15}} = \frac{y}{{20}} = \frac{z}{{24}}\) (đpcm)
b) Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{{15}} = \frac{y}{{20}} = \frac{z}{{24}} = \frac{{x - y + z}}{{15 - 20 + 24}} = \frac{{ - 76}}{{19}} = - 4\)
Vậy x = 15 . (-4) = -60; y = 20. (-4) = -80; z = 24 . (-4) = -96
Ta có:\(\frac{-24}{-6}=4=\frac{12}{3}=\frac{4}{1^2}=\frac{\left(-2\right)^3}{-2}\)
Vậy x=12
y=1
z=-2
\(\frac{x}{8}=-\frac{6}{12}\Leftrightarrow x=-4\)
\(\frac{-8}{y^2}=-\frac{6}{12}\Leftrightarrow y^2=16\Leftrightarrow y=4\)
\(\frac{z}{-18}=-\frac{6}{12}\Leftrightarrow z=9\)
Chúc bạn học tốt ^_^
Ta có :
\(\frac{2}{3}\)là phân số tối giản
nên \(\frac{-x}{6}=\frac{2}{3}\)
\(\Rightarrow\text{-x.3=2.6}\)
\(\Rightarrow-x.3=12\)
\(\Rightarrow x=-4\)
Tương tự \(\frac{14}{-y}=\frac{2}{3}\)
\(14.3=2.y\)
\(\Leftrightarrow42=2y\)
\(\Rightarrow y=21\)
Và \(\frac{z}{60}=\frac{2}{3}\)
\(\Leftrightarrow3z=2.60\)
\(\Leftrightarrow3z=120\)
\(\Rightarrow z=40\)
Vậy x=-4
y=21
z=40
chúc bạn học tốt !
\(\frac{-x}{6}=\frac{14}{-y}=\frac{z}{60}=\frac{2}{3}\)
Xét \(\frac{-x}{6}=\frac{2}{3}\)
\(\Leftrightarrow-x.3=12\Leftrightarrow-x=4\Leftrightarrow x=-4\)
Xét \(\frac{14}{-y}=\frac{2}{3}\)
\(\Leftrightarrow14.3=-y.2\Leftrightarrow42=-y.2\Leftrightarrow y=-21\)
Xét \(\frac{z}{60}=\frac{2}{3}\)
\(\Leftrightarrow z.3=120\Leftrightarrow z=40\)