K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 3 2020

các bạn trả lời giúp mik vs

28 tháng 3 2020

a) Xét hai tam giác vuông ΔBEF và ΔBAC

có:

BF=BC

(do ΔBFC

cân đỉnh B)

ˆB

chung

⇒ΔBEF=ΔBAC

(cạnh huyền-góc nhọn).

b) ΔBEF=ΔBAC⇒ˆBFE=ˆBCA

(hai tương ứng)

Mà ΔBFC

cân đỉnh B nên: ˆBFC=ˆBCF

ˆBFC−ˆBFE=ˆBCF−ˆBCA

⇒ˆEFC=ˆACF

hay ˆDFC=ˆDCF⇒ΔDFC cân đỉnh D⇒DF=DC

Xét ΔBFD

và ΔBCD

có:

BF=BC

(giả thiết)

BD

chung

DF=DC

(cmt)

⇒ΔBFD=ΔBCD

(c.c.c)

⇒ˆFBD=ˆCBD

(hai góc tương ứng)

⇒BD

là phân giác ˆFBC

.

c) ΔBEF=ΔBAC⇒BE=BA

⇒BF−BA=BC−BE

hay AF=EC

Xét ΔAFM

và ΔECM

có:

FM=CM

(do M là trung điểm cạnh FC)

ˆAFM=ˆECM

(giả thiết)

AF=EC

(cmt)

⇒ΔAFM=ΔECM

(c.g.c)

⇒MA=ME

lại có BA=BE⇒MB là trung trực của AE

⇒MB⊥AE

.

imagerotate

17 tháng 4 2020

B F C A M E D

a) Xét 2 tam giác BEF và BAC có :

BF = BC ( Tam giác BCF cân tại B )

Góc B chung

=> Tam giác BEF = BAC ( ch-gn )

b) Vì tam giác BEF = BAC ( cmt )

-> Góc BFE = góc BCA ( 2 góc t/ứng )

Mà tam giác BCF cân tại B

=> BFC = BCF 

BFC - BFE = BCF - BCA 

 \(\Rightarrow\widehat{EFC\:}=\widehat{ACF} hay \widehat{DFC}=\widehat{DCF}\)

=> Tam giác DFC cân tại đỉnh D

=> DF = DC

Xét tam giác BFD và BCD có :

BF = BC ( gt )

BD chung

DF = DC ( cmt )

=> = nhau ( c.c.c)

=> FBD = CBD ( 2 góc t/ứng )

=> BD là tia phân giác của góc ABC

c) Vì tam giác BEF = BAC 

=> BE = BA

=> BF - BA = BC - BE hay AF = EC

Xét tam giác AFM và ECM có :

FM = CM ( do M là trg điểm FC )

AFM = ECM ( gt )

AF = EC ( cmt )

=> = nhau ( c.g.c )

=> MA = ME lại có BA = BE

=> MB là trg trực của AE

=> BM vuông góc AE

28 tháng 3 2020
  • a) Xét hai tam giác vuông ΔBEFΔBEF và ΔBACΔBAC có:

    BF=BCBF=BC (do ΔBFCΔBFC cân đỉnh B)

    ˆBB^ chung

    ⇒ΔBEF=ΔBAC⇒ΔBEF=ΔBAC (cạnh huyền-góc nhọn).

    b) ΔBEF=ΔBAC⇒ˆBFE=ˆBCAΔBEF=ΔBAC⇒BFE^=BCA^ (hai tương ứng)

    Mà ΔBFCΔBFC cân đỉnh BB nên: ˆBFC=ˆBCFBFC^=BCF^

    ˆBFC−ˆBFE=ˆBCF−ˆBCABFC^−BFE^=BCF^−BCA^

    ⇒ˆEFC=ˆACF⇒EFC^=ACF^ hay ˆDFC=ˆDCF⇒ΔDFCDFC^=DCF^⇒ΔDFC cân đỉnh D⇒DF=DCD⇒DF=DC

    Xét ΔBFDΔBFD và ΔBCDΔBCD có:

    BF=BCBF=BC (giả thiết)

    BDBD chung

    DF=DCDF=DC (cmt)

    ⇒ΔBFD=ΔBCD⇒ΔBFD=ΔBCD (c.c.c)

    ⇒ˆFBD=ˆCBD⇒FBD^=CBD^ (hai góc tương ứng)

    ⇒BD⇒BD là phân giác ˆFBCFBC^.

    c) ΔBEF=ΔBAC⇒BE=BAΔBEF=ΔBAC⇒BE=BA

    ⇒BF−BA=BC−BE⇒BF−BA=BC−BE hay AF=ECAF=EC

    Xét ΔAFMΔAFM và ΔECMΔECM có:

    FM=CMFM=CM (do M là trung điểm cạnh FC)

    ˆAFM=ˆECMAFM^=ECM^ (giả thiết)

    AF=ECAF=EC (cmt)

    ⇒ΔAFM=ΔECM⇒ΔAFM=ΔECM (c.g.c)

    ⇒MA=ME⇒MA=ME lại có BA=BE⇒MBBA=BE⇒MB là trung trực của AEAE

    ⇒MB⊥AE⇒MB⊥AE.

Bài làm

B F C A B M D

a) Xét tam giác BAC và tam giác BEF có:

^BAC = ^BEF ( = 90o )

cạnh huyền BC = BF 

góc nhọn: ^B chung.

=> Tam giác BAC = tam giác BEF ( cạnh huyền - góc nhọn )

b) Ta có: ^BFD + ^DFC = ^BFC 

^BCA + ^ACF = ^BCF

hay ^BCA = ^BFE ( Do tam giác BAC = tam giác BEF )

^BCF = ^BFC 

=> ^DFC = ^DCF 

=> Tam giác DFC cân tại D

=> DF = DC

Xét tam giác BDF và tam giác BDC có:

BF = BC

DF = DC

BD chung

=> Tam giác BDF = tam giác BDC

=> ^FBD = ^CBD

=> BD là tia phân giác của góc FBC

c) Vì Tam giác FBC cân tại B

mà BM trung tuyến

=> BM là đường cao

=> BM vuông góc với FC

Vì AB = BE ( Do tam giác BAC = tam giác BFE )

=> Tam giác ABE cân tại B

=> ^ABE = ( 180o - ^FBC )/2                       (1) 

Vì Tam giác BFC cân tại B

=> ^BFC = ( 180o - ^FBC )/2                       (2)

Từ (1) và (2) => ^ABE = ^BFC 

Mà hai góc này vị trí đồng vị

=> AE // FC

Mà BM vuông góc FC

=> BM vuông góc với AC ( đpcm )

# Học tốt #

a) +) Xét ΔBFE vuông tại E và Δ BAC vuông tại A có

BF = BC ( do Δ BFC cân tại B )
FBC : góc chung

⇒ Δ BEF = Δ BAC (ch-gn)

⇒ BE = BA ( 2 cạnh tương ứng)

b) +) Xét Δ BED vuông tại E và ΔBAD vuông tại A có

AD: cạnh chung

BE = BA (cmt)

⇒ Δ BED = Δ BAD (ch-cgv)

⇒ EBD = ABD ( 2 góc tương ứng)

hay CBD =ABD

=> BD là phân giác góc ABC

c) +) Xét ΔBFM và Δ BCM có

BF = BC ( do Δ FBC cân tại B )
\(\widehat{F}=\widehat{C}\) ( do Δ FBC cân tại B )

FM = CM ( do M là trung điểm FC )

⇒ Δ BFM = Δ BCM ( c.g.c)

⇒ \(\widehat{BMF}=\widehat{BMC}\)( 2 góc tương ứng)

+) Mà \(\widehat{BMF}+\widehat{BMC}\)= 180 ( kề bù)

⇒ \(\widehat{BMF}=\widehat{BMC}=90^o\)

+) Lại có BM cắt FC tại M

⇒ BM ⊥ FCB  (1)
+) Xét ΔBEA có

BE = BA

=> Δ BEA cân tại B

⇒ \(\widehat{AEB}=\frac{180^o-\widehat{FBC}}{2}\)2 ( tính chất tam giác cân )
Mặt khác \(\widehat{FCB}=\frac{180^o-\widehat{FBC}}{2}\) ( do Δ FBC cân tại B )

⇒ AEB = BCF 

Mà 2 góc này ở vị trí đồng vị

⇒ AE // CF (2)
Từ (1) và (2) => BM ⊥ AE

Học tốt __ hơi dài ạ

Xóa giùm t cái hình đi ạ :))

Nộp r ms thấy chx xóa hình

Học tốt ạ 

@@@